Your Input:  | |||||
| PKLR | Pyruvate kinase PKLR; Plays a key role in glycolysis. (574 aa) | ||||
| PKM | Pyruvate kinase PKM; Glycolytic enzyme that catalyzes the transfer of a phosphoryl group from phosphoenolpyruvate (PEP) to ADP, generating ATP. Stimulates POU5F1-mediated transcriptional activation. Plays a general role in caspase independent cell death of tumor cells. The ratio between the highly active tetrameric form and nearly inactive dimeric form determines whether glucose carbons are channeled to biosynthetic processes or used for glycolytic ATP production. The transition between the 2 forms contributes to the control of glycolysis and is important for tumor cell proliferation a [...] (531 aa) | ||||
| MARC2 | Mitochondrial amidoxime reducing component 2; Catalyzes the reduction of N-oxygenated molecules, acting as a counterpart of cytochrome P450 and flavin-containing monooxygenases in metabolic cycles. As a component of prodrug-converting system, reduces a multitude of N-hydroxylated prodrugs particularly amidoximes, leading to increased drug bioavailability. May be involved in mitochondrial N(omega)-hydroxy-L-arginine (NOHA) reduction, regulating endogenous nitric oxide levels and biosynthesis. Postulated to cleave the N-OH bond of N-hydroxylated substrates in concert with electron transf [...] (335 aa) | ||||
| MARC1 | Mitochondrial amidoxime-reducing component 1; Catalyzes the reduction of N-oxygenated molecules, acting as a counterpart of cytochrome P450 and flavin-containing monooxygenases in metabolic cycles. As a component of prodrug-converting system, reduces a multitude of N-hydroxylated prodrugs particularly amidoximes, leading to increased drug bioavailability. May be involved in mitochondrial N(omega)-hydroxy-L-arginine (NOHA) reduction, regulating endogenous nitric oxide levels and biosynthesis. Postulated to cleave the N-OH bond of N-hydroxylated substrates in concert with electron transf [...] (337 aa) | ||||
| MOCOS | Molybdenum cofactor sulfurase; Sulfurates the molybdenum cofactor. Sulfation of molybdenum is essential for xanthine dehydrogenase (XDH) and aldehyde oxidase (ADO) enzymes in which molybdenum cofactor is liganded by 1 oxygen and 1 sulfur atom in active form. In vitro, the C-terminal domain is able to reduce N-hydroxylated prodrugs, such as benzamidoxime. Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. MOCOS subfamily. (888 aa) | ||||