STRINGSTRING
TRPC4 TRPC4 TRPC5 TRPC5 TRPC6 TRPC6 TRPC3 TRPC3 TRPC1 TRPC1 TRPC7 TRPC7
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
TRPC4Short transient receptor potential channel 4; Forms a receptor-activated non-selective calcium permeant cation channel. Acts as a cell-cell contact-dependent endothelial calcium entry channel. Probably operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Mediates cation entry, with an enhanced permeability to barium over calcium. May also be activated by intracellular calcium store depletion; Belongs to the transient receptor (TC 1.A.4) family. STrpC subfamily. TRPC4 sub-subfamily. (982 aa)
TRPC5Short transient receptor potential channel 5; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Has also been shown to be calcium-selective (By similarity). May also be activated by intracellular calcium store depletion. (973 aa)
TRPC6Short transient receptor potential channel 6; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G-protein coupled receptors. Activated by diacylglycerol (DAG) in a membrane-delimited fashion, independently of protein kinase C. Seems not to be activated by intracellular calcium store depletion; Belongs to the transient receptor (TC 1.A.4) family. STrpC subfamily. TRPC6 sub-subfamily. (931 aa)
TRPC3Short transient receptor potential channel 3; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Activated by diacylglycerol (DAG) in a membrane-delimited fashion, independently of protein kinase C, and by inositol 1,4,5-triphosphate receptors (ITPR) with bound IP3. May also be activated by internal calcium store depletion. (921 aa)
TRPC1Short transient receptor potential channel 1; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Seems to be also activated by intracellular calcium store depletion. (793 aa)
TRPC7Short transient receptor potential channel 7; Thought to form a receptor-activated non-selective calcium permeant cation channel. Probably is operated by a phosphatidylinositol second messenger system activated by receptor tyrosine kinases or G- protein coupled receptors. Activated by diacylglycerol (DAG) (By similarity). May also be activated by intracellular calcium store depletion. (862 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (24%) [HD]