node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
EEF2 | EFTUD2 | ENSP00000307940 | ENSP00000392094 | Elongation factor 2; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome. | 116 kDa U5 small nuclear ribonucleoprotein component; Required for pre-mRNA splicing as component of the spliceosome, including pre-catalytic, catalytic and post-catalytic spliceosomal complexes. Component of the U5 snRNP and the U4/U6-U5 tri-snRNP complex, a building block of the spliceosome. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. | 0.524 |
EEF2 | GFM1 | ENSP00000307940 | ENSP00000264263 | Elongation factor 2; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome. | Elongation factor G, mitochondrial; Mitochondrial GTPase that catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome. Does not mediate the disassembly of ribosomes from messenger RNA at the termination of mito [...] | 0.657 |
EEF2 | GFM2 | ENSP00000307940 | ENSP00000427004 | Elongation factor 2; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome. | Ribosome-releasing factor 2, mitochondrial; Mitochondrial GTPase that mediates the disassembly of ribosomes from messenger RNA at the termination of mitochondrial protein biosynthesis. Acts in collaboration with MRRF. GTP hydrolysis follows the ribosome disassembly and probably occurs on the ribosome large subunit. Not involved in the GTP-dependent ribosomal translocation step during translation elongation. | 0.487 |
EEF2 | MRPS5 | ENSP00000307940 | ENSP00000272418 | Elongation factor 2; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome. | Mitochondrial ribosomal protein S5; Belongs to the universal ribosomal protein uS5 family. | 0.876 |
EEF2 | MRPS9 | ENSP00000307940 | ENSP00000258455 | Elongation factor 2; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome. | Mitochondrial ribosomal protein S9. | 0.940 |
EEF2 | RPS16 | ENSP00000307940 | ENSP00000367806 | Elongation factor 2; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome. | Ribosomal protein S16. | 0.999 |
EEF2 | RPS2 | ENSP00000307940 | ENSP00000341885 | Elongation factor 2; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome. | Ribosomal protein S2. | 0.999 |
EEF2 | TOP2A | ENSP00000307940 | ENSP00000411532 | Elongation factor 2; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome. | DNA topoisomerase 2-alpha; Control of topological states of DNA by transient breakage and subsequent rejoining of DNA strands. Topoisomerase II makes double- strand breaks. Essential during mitosis and meiosis for proper segregation of daughter chromosomes. May play a role in regulating the period length of ARNTL/BMAL1 transcriptional oscillation (By similarity). | 0.659 |
EEF2 | TOP2B | ENSP00000307940 | ENSP00000264331 | Elongation factor 2; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome. | DNA topoisomerase 2-beta; Control of topological states of DNA by transient breakage and subsequent rejoining of DNA strands. Topoisomerase II makes double- strand breaks; Belongs to the type II topoisomerase family. | 0.470 |
EFL1 | MRPS5 | ENSP00000268206 | ENSP00000272418 | Elongation factor-like GTPase 1; Involved in the biogenesis of the 60S ribosomal subunit and translational activation of ribosomes. Together with SBDS, triggers the GTP-dependent release of EIF6 from 60S pre-ribosomes in the cytoplasm, thereby activating ribosomes for translation competence by allowing 80S ribosome assembly and facilitating EIF6 recycling to the nucleus, where it is required for 60S rRNA processing and nuclear export. Has low intrinsic GTPase activity. GTPase activity is increased by contact with 60S ribosome subunits. | Mitochondrial ribosomal protein S5; Belongs to the universal ribosomal protein uS5 family. | 0.844 |
EFL1 | MRPS9 | ENSP00000268206 | ENSP00000258455 | Elongation factor-like GTPase 1; Involved in the biogenesis of the 60S ribosomal subunit and translational activation of ribosomes. Together with SBDS, triggers the GTP-dependent release of EIF6 from 60S pre-ribosomes in the cytoplasm, thereby activating ribosomes for translation competence by allowing 80S ribosome assembly and facilitating EIF6 recycling to the nucleus, where it is required for 60S rRNA processing and nuclear export. Has low intrinsic GTPase activity. GTPase activity is increased by contact with 60S ribosome subunits. | Mitochondrial ribosomal protein S9. | 0.943 |
EFL1 | RPS16 | ENSP00000268206 | ENSP00000367806 | Elongation factor-like GTPase 1; Involved in the biogenesis of the 60S ribosomal subunit and translational activation of ribosomes. Together with SBDS, triggers the GTP-dependent release of EIF6 from 60S pre-ribosomes in the cytoplasm, thereby activating ribosomes for translation competence by allowing 80S ribosome assembly and facilitating EIF6 recycling to the nucleus, where it is required for 60S rRNA processing and nuclear export. Has low intrinsic GTPase activity. GTPase activity is increased by contact with 60S ribosome subunits. | Ribosomal protein S16. | 0.804 |
EFL1 | RPS2 | ENSP00000268206 | ENSP00000341885 | Elongation factor-like GTPase 1; Involved in the biogenesis of the 60S ribosomal subunit and translational activation of ribosomes. Together with SBDS, triggers the GTP-dependent release of EIF6 from 60S pre-ribosomes in the cytoplasm, thereby activating ribosomes for translation competence by allowing 80S ribosome assembly and facilitating EIF6 recycling to the nucleus, where it is required for 60S rRNA processing and nuclear export. Has low intrinsic GTPase activity. GTPase activity is increased by contact with 60S ribosome subunits. | Ribosomal protein S2. | 0.845 |
EFL1 | TOP2A | ENSP00000268206 | ENSP00000411532 | Elongation factor-like GTPase 1; Involved in the biogenesis of the 60S ribosomal subunit and translational activation of ribosomes. Together with SBDS, triggers the GTP-dependent release of EIF6 from 60S pre-ribosomes in the cytoplasm, thereby activating ribosomes for translation competence by allowing 80S ribosome assembly and facilitating EIF6 recycling to the nucleus, where it is required for 60S rRNA processing and nuclear export. Has low intrinsic GTPase activity. GTPase activity is increased by contact with 60S ribosome subunits. | DNA topoisomerase 2-alpha; Control of topological states of DNA by transient breakage and subsequent rejoining of DNA strands. Topoisomerase II makes double- strand breaks. Essential during mitosis and meiosis for proper segregation of daughter chromosomes. May play a role in regulating the period length of ARNTL/BMAL1 transcriptional oscillation (By similarity). | 0.409 |
EFL1 | TOP2B | ENSP00000268206 | ENSP00000264331 | Elongation factor-like GTPase 1; Involved in the biogenesis of the 60S ribosomal subunit and translational activation of ribosomes. Together with SBDS, triggers the GTP-dependent release of EIF6 from 60S pre-ribosomes in the cytoplasm, thereby activating ribosomes for translation competence by allowing 80S ribosome assembly and facilitating EIF6 recycling to the nucleus, where it is required for 60S rRNA processing and nuclear export. Has low intrinsic GTPase activity. GTPase activity is increased by contact with 60S ribosome subunits. | DNA topoisomerase 2-beta; Control of topological states of DNA by transient breakage and subsequent rejoining of DNA strands. Topoisomerase II makes double- strand breaks; Belongs to the type II topoisomerase family. | 0.423 |
EFTUD2 | EEF2 | ENSP00000392094 | ENSP00000307940 | 116 kDa U5 small nuclear ribonucleoprotein component; Required for pre-mRNA splicing as component of the spliceosome, including pre-catalytic, catalytic and post-catalytic spliceosomal complexes. Component of the U5 snRNP and the U4/U6-U5 tri-snRNP complex, a building block of the spliceosome. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. | Elongation factor 2; Catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome. | 0.524 |
EFTUD2 | MRPS5 | ENSP00000392094 | ENSP00000272418 | 116 kDa U5 small nuclear ribonucleoprotein component; Required for pre-mRNA splicing as component of the spliceosome, including pre-catalytic, catalytic and post-catalytic spliceosomal complexes. Component of the U5 snRNP and the U4/U6-U5 tri-snRNP complex, a building block of the spliceosome. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. | Mitochondrial ribosomal protein S5; Belongs to the universal ribosomal protein uS5 family. | 0.873 |
EFTUD2 | MRPS9 | ENSP00000392094 | ENSP00000258455 | 116 kDa U5 small nuclear ribonucleoprotein component; Required for pre-mRNA splicing as component of the spliceosome, including pre-catalytic, catalytic and post-catalytic spliceosomal complexes. Component of the U5 snRNP and the U4/U6-U5 tri-snRNP complex, a building block of the spliceosome. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. | Mitochondrial ribosomal protein S9. | 0.950 |
EFTUD2 | RPS16 | ENSP00000392094 | ENSP00000367806 | 116 kDa U5 small nuclear ribonucleoprotein component; Required for pre-mRNA splicing as component of the spliceosome, including pre-catalytic, catalytic and post-catalytic spliceosomal complexes. Component of the U5 snRNP and the U4/U6-U5 tri-snRNP complex, a building block of the spliceosome. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. | Ribosomal protein S16. | 0.877 |
EFTUD2 | RPS2 | ENSP00000392094 | ENSP00000341885 | 116 kDa U5 small nuclear ribonucleoprotein component; Required for pre-mRNA splicing as component of the spliceosome, including pre-catalytic, catalytic and post-catalytic spliceosomal complexes. Component of the U5 snRNP and the U4/U6-U5 tri-snRNP complex, a building block of the spliceosome. Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family. EF-G/EF-2 subfamily. | Ribosomal protein S2. | 0.880 |