STRINGSTRING
MAF MAF MAFA MAFA MAFK MAFK MAFG MAFG NRL NRL MAFF MAFF MAFB MAFB
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
MAFTranscription factor Maf; Acts as a transcriptional activator or repressor. Involved in embryonic lens fiber cell development. Recruits the transcriptional coactivators CREBBP and/or EP300 to crystallin promoters leading to up- regulation of crystallin gene during lens fiber cell differentiation. Activates the expression of IL4 in T helper 2 (Th2) cells. Increases T- cell susceptibility to apoptosis by interacting with MYB and decreasing BCL2 expression. Together with PAX6, transactivates strongly the glucagon gene promoter through the G1 element. Activates transcription of the CD13 pr [...] (403 aa)
MAFATranscription factor MafA; Transcription factor that activates insulin gene expression. Acts synergistically with NEUROD1/BETA2 and PDX1. Binds the insulin enhancer C1/RIPE3b element. Binds to consensus TRE-type MARE 5'-TGCTGACTCAGCA-3' DNA sequence. (353 aa)
MAFKTranscription factor MafK; Since they lack a putative transactivation domain, the small Mafs behave as transcriptional repressors when they dimerize among themselves. However, they act as transcriptional activators by dimerizing with other (usually larger) basic-zipper proteins, such as NFE2, NFE2L1/NRF1, NFE2L2/NRF2 and NFE2L3/NRF3, and recruiting them to specific DNA-binding sites. Small Maf proteins heterodimerize with Fos and may act as competitive repressors of the NF-E2 transcription factor ; Belongs to the bZIP family. Maf subfamily. (156 aa)
MAFGTranscription factor MafG; Since they lack a putative transactivation domain, the small Mafs behave as transcriptional repressors when they dimerize among themselves. However, they seem to serve as transcriptional activators by dimerizing with other (usually larger) basic-zipper proteins, such as NFE2, NFE2L1 and NFE2L2, and recruiting them to specific DNA-binding sites. Small Maf proteins heterodimerize with Fos and may act as competitive repressors of the NFE2L2 transcription factor. Transcription factor, component of erythroid- specific transcription factor NFE2L2. Activates globin [...] (162 aa)
NRLNeural retina-specific leucine zipper protein; Acts as a transcriptional activator which regulates the expression of several rod-specific genes, including RHO and PDE6B. Functions also as a transcriptional coactivator, stimulating transcription mediated by the transcription factor CRX and NR2E3. Binds in a sequence-specific manner to the rhodopsin promoter. (237 aa)
MAFFTranscription factor MafF; Since they lack a putative transactivation domain, the small Mafs behave as transcriptional repressors when they dimerize among themselves. However, they seem to serve as transcriptional activators by dimerizing with other (usually larger) basic-zipper proteins, such as NFE2L1/NRF1, and recruiting them to specific DNA-binding sites. Interacts with the upstream promoter region of the oxytocin receptor gene. May be a transcriptional enhancer in the up-regulation of the oxytocin receptor gene at parturition. Belongs to the bZIP family. Maf subfamily. (164 aa)
MAFBTranscription factor MafB; Acts as a transcriptional activator or repressor. Plays a pivotal role in regulating lineage-specific hematopoiesis by repressing ETS1-mediated transcription of erythroid- specific genes in myeloid cells. Required for monocytic, macrophage, osteoclast, podocyte and islet beta cell differentiation. Involved in renal tubule survival and F4/80 maturation. Activates the insulin and glucagon promoters. Together with PAX6, transactivates weakly the glucagon gene promoter through the G1 element. SUMO modification controls its transcriptional activity and ability to [...] (323 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (32%) [HD]