STRINGSTRING
PLA2G1B PLA2G1B PLA2G10 PLA2G10 PLA2G2A PLA2G2A PLA2G5 PLA2G5 PLA2G2D PLA2G2D I6L893_HUMAN I6L893_HUMAN OC90 OC90 PLA2G2C PLA2G2C
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
PLA2G1BPhospholipase A2; PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides, this releases glycerophospholipids and arachidonic acid that serve as the precursors of signal molecules. Belongs to the phospholipase A2 family. (148 aa)
PLA2G10Group 10 secretory phospholipase A2; PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Has a powerful potency for releasing arachidonic acid from cell membrane phospholipids. Prefers phosphatidylethanolamine and phosphatidylcholine liposomes to those of phosphatidylserine. (165 aa)
PLA2G2APhospholipase A2, membrane associated; Catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Thought to participate in the regulation of phospholipid metabolism in biomembranes including eicosanoid biosynthesis. Independent of its catalytic activity, acts as a ligand for integrins. Binds to and activates integrins ITGAV:ITGB3, ITGA4:ITGB1 and ITGA5:ITGB1. Binds to a site (site 2) which is distinct from the classical ligand-binding site (site 1) and induces integrin conformational changes and enhanced ligand binding to site 1. Induces cell proliferat [...] (144 aa)
PLA2G5Calcium-dependent phospholipase A2; PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. This isozyme hydrolyzes more efficiently L-alpha-1-palmitoyl-2-oleoyl phosphatidylcholine than L- alpha-1-palmitoyl-2-arachidonyl phosphatidylcholine, L-alpha-1- palmitoyl-2-arachidonyl phosphatidylethanolamine, or L-alpha-1- stearoyl-2-arachidonyl phosphatidylinositol. May be involved in the production of lung surfactant, the remodeling or regulation of cardiac muscle. (138 aa)
PLA2G2DGroup IID secretory phospholipase A2; PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. L-alpha-1-palmitoyl-2-linoleoyl phosphatidylethanolamine is more efficiently hydrolyzed than the other phospholipids examined. (145 aa)
I6L893_HUMANUncharacterized protein. (689 aa)
OC90Otoconin-90; Major protein of the otoconia, a calcium carbonate structure in the saccule and utricle of the ear. Together with OTOL1, acts as a scaffold for otoconia biomineralization: sequesters calcium and forms interconnecting fibrils between otoconia that are incorporated into the calcium crystal structure. Together with OTOL1, modulates calcite crystal morphology and growth kinetics. It is unlikely that this protein has phospholipase A2 activity. (477 aa)
PLA2G2CPutative inactive group IIC secretory phospholipase A2; Inactive phospholipase. (150 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (28%) [HD]