Your Input: | |||||
MYBBP1A | Myb-binding protein 1A; May activate or repress transcription via interactions with sequence specific DNA-binding proteins (By similarity). Repression may be mediated at least in part by histone deacetylase activity (HDAC activity) (By similarity). Acts as a corepressor and in concert with CRY1, represses the transcription of the core circadian clock component PER2 (By similarity). Preferentially binds to dimethylated histone H3 'Lys-9' (H3K9me2) on the PER2 promoter (By similarity). Has a role in rRNA biogenesis together with PWP1. Belongs to the MYBBP1A family. (1332 aa) | ||||
NOP2 | Probable 28S rRNA (cytosine(4447)-C(5))-methyltransferase; Involved in ribosomal large subunit assembly. S-adenosyl-L-methionine-dependent methyltransferase that specifically methylates the C(5) position of cytosine 4447 in 28S rRNA (Probable). May play a role in the regulation of the cell cycle and the increased nucleolar activity that is associated with the cell proliferation (Probable); Belongs to the class I-like SAM-binding methyltransferase superfamily. RsmB/NOP family. (845 aa) | ||||
RPL13A | 60S ribosomal protein L13a; Associated with ribosomes but is not required for canonical ribosome function and has extra-ribosomal functions. Component of the GAIT (gamma interferon-activated inhibitor of translation) complex which mediates interferon-gamma-induced transcript-selective translation inhibition in inflammation processes. Upon interferon-gamma activation and subsequent phosphorylation dissociates from the ribosome and assembles into the GAIT complex which binds to stem loop-containing GAIT elements in the 3'-UTR of diverse inflammatory mRNAs (such as ceruplasmin) and suppre [...] (203 aa) | ||||
UTP14A | U3 small nucleolar RNA-associated protein 14 homolog A; May be required for ribosome biogenesis. (771 aa) | ||||
ING4 | Inhibitor of growth protein 4; Component of the HBO1 complex which has a histone H4-specific acetyltransferase activity, a reduced activity toward histone H3 and is responsible for the bulk of histone H4 acetylation in vivo. Through chromatin acetylation it may function in DNA replication. May inhibit tumor progression by modulating the transcriptional output of signaling pathways which regulate cell proliferation. Can suppress brain tumor angiogenesis through transcriptional repression of RELA/NFKB3 target genes when complexed with RELA. May also specifically suppress loss of contact [...] (249 aa) | ||||
MBP | Myelin basic protein; The classic group of MBP isoforms (isoform 4-isoform 14) are with PLP the most abundant protein components of the myelin membrane in the CNS. They have a role in both its formation and stabilization. The smaller isoforms might have an important role in remyelination of denuded axons in multiple sclerosis. The non-classic group of MBP isoforms (isoform 1-isoform 3/Golli-MBPs) may preferentially have a role in the early developing brain long before myelination, maybe as components of transcriptional complexes, and may also be involved in signaling pathways in T-cell [...] (197 aa) | ||||
RPL23A | 60S ribosomal protein L23a; Component of the ribosome, a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. Binds a specific region on the 26S rRNA. May promote p53/TP53 degradation possibly through the stimulation of MDM2-mediated TP53 polyubiquitination ; Belongs to the universal ribosomal protein uL23 family. (156 aa) | ||||
PSIP1 | PC4 and SFRS1-interacting protein; Transcriptional coactivator involved in neuroepithelial stem cell differentiation and neurogenesis. Involved in particular in lens epithelial cell gene regulation and stress responses. May play an important role in lens epithelial to fiber cell terminal differentiation. May play a protective role during stress-induced apoptosis. Isoform 2 is a more general and stronger transcriptional coactivator. Isoform 2 may also act as an adapter to coordinate pre- mRNA splicing. Cellular cofactor for lentiviral integration. (530 aa) | ||||
FTSJ3 | pre-rRNA 2'-O-ribose RNA methyltransferase FTSJ3; RNA 2'-O-methyltransferase involved in the processing of the 34S pre-rRNA to 18S rRNA and in 40S ribosomal subunit formation. (847 aa) | ||||
RPL10 | 60S ribosomal protein L10; Component of the large ribosomal subunit. Plays a role in the formation of actively translating ribosomes. May play a role in the embryonic brain development. (214 aa) | ||||
ALYREF | THO complex subunit 4; Export adapter involved in nuclear export of spliced and unspliced mRNA. Binds mRNA which is thought to be transferred to the NXF1-NXT1 heterodimer for export (TAP/NFX1 pathway). Component of the TREX complex which is thought to couple mRNA transcription, processing and nuclear export, and specifically associates with spliced mRNA and not with unspliced pre-mRNA. TREX is recruited to spliced mRNAs by a transcription-independent mechanism, binds to mRNA upstream of the exon-junction complex (EJC) and is recruited in a splicing- and cap-dependent manner to a region [...] (264 aa) | ||||
BCLAF1 | Bcl-2-associated transcription factor 1; Death-promoting transcriptional repressor. May be involved in cyclin-D1/CCND1 mRNA stability through the SNARP complex which associates with both the 3'end of the CCND1 gene and its mRNA. (920 aa) | ||||
TCHH | Trichohyalin; Intermediate filament-associated protein that associates in regular arrays with keratin intermediate filaments (KIF) of the inner root sheath cells of the hair follicle and the granular layer of the epidermis. It later becomes cross-linked to KIF by isodipeptide bonds. It may serve as scaffold protein, together with involucrin, in the organization of the cell envelope or even anchor the cell envelope to the KIF network. It may be involved in its own calcium-dependent postsynthetic processing during terminal differentiation. (1943 aa) | ||||
HNRNPU | Heterogeneous nuclear ribonucleoprotein U; DNA- and RNA-binding protein involved in several cellular processes such as nuclear chromatin organization, telomere-length regulation, transcription, mRNA alternative splicing and stability, Xist-mediated transcriptional silencing and mitotic cell progression. Plays a role in the regulation of interphase large-scale gene-rich chromatin organization through chromatin-associated RNAs (caRNAs) in a transcription-dependent manner, and thereby maintains genomic stability. Required for the localization of the long non-coding Xist RNA on the inactiv [...] (825 aa) | ||||
H3Y1 | Histone H3.Y; Primate-specific variant histone H3, which constitutes a core component of nucleosomes. Histone H3.Y-containing nucleosomes accumulate around transcription start sites and have flexible DNA ends, suggesting that they form relaxed chromatin that allows transcription factor access. Histone H1 binds less efficiently to histone H3.Y-containing nucleosomes. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA repl [...] (136 aa) | ||||
H2AC6 | Histone H2A type 1-C; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. (130 aa) | ||||
PADI4 | Protein-arginine deiminase type-4; Catalyzes the citrullination/deimination of arginine residues of proteins such as histones, thereby playing a key role in histone code and regulation of stem cell maintenance. Citrullinates histone H1 at 'Arg-54' (to form H1R54ci), histone H3 at 'Arg-2', 'Arg-8', 'Arg-17' and/or 'Arg-26' (to form H3R2ci, H3R8ci, H3R17ci, H3R26ci, respectively) and histone H4 at 'Arg-3' (to form H4R3ci). Acts as a key regulator of stem cell maintenance by mediating citrullination of histone H1: citrullination of 'Arg-54' of histone H1 (H1R54ci) results in H1 displaceme [...] (663 aa) | ||||
H2AC18 | Histone H2A type 2-A; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. (130 aa) | ||||
FLG | Filaggrin; Aggregates keratin intermediate filaments and promotes disulfide-bond formation among the intermediate filaments during terminal differentiation of mammalian epidermis. (4061 aa) | ||||
S100A3 | Protein S100-A3; Binds both calcium and zinc. May be involved in calcium- dependent cuticle cell differentiation, hair shaft and hair cuticular barrier formation. (101 aa) | ||||
RRP15 | RRP15-like protein; Ribosomal RNA processing 15 homolog. (282 aa) | ||||
H3-4 | Histone H3.1t; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. (136 aa) | ||||
H2AW | Histone H2A type 3; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. (130 aa) | ||||
H3C12 | Histone H3.1; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. (136 aa) | ||||
H2AC13 | Histone H2A type 1; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. (130 aa) | ||||
H1-0 | Histone H1.0, N-terminally processed; Histones H1 are necessary for the condensation of nucleosome chains into higher-order structures. The histones H1.0 are found in cells that are in terminal stages of differentiation or that have low rates of cell division. (194 aa) | ||||
KRT77 | Keratin, type II cytoskeletal 1b; Keratin 77. (578 aa) | ||||
RPS2 | Ribosomal protein S2. (293 aa) | ||||
H1-6 | Histone H1t; Testis-specific histone H1 that forms less compacted chromatin compared to other H1 histone subtypes. Formation of more relaxed chromatin may be required to promote chromatin architecture required for proper chromosome regulation during meiosis, such as homologous recombination. Histones H1 act as linkers that bind to nucleosomes and compact polynucleosomes into a higher-order chromatin configuration (Probable). (207 aa) | ||||
H2AC7 | Histone H2A type 1-D; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. (130 aa) | ||||
H3-5 | Histone H3.3C; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Hominid-specific H3.5/H3F3C preferentially colocalizes with euchromatin, and it is associated with actively transcribed genes. (135 aa) | ||||
H1-2 | Histone H1.2; Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Acts also as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). (213 aa) | ||||
RRP1B | Ribosomal RNA processing protein 1 homolog B; Positively regulates DNA damage-induced apoptosis by acting as a transcriptional coactivator of proapoptotic target genes of the transcriptional activator E2F1. Likely to play a role in ribosome biogenesis by targeting serine/threonine protein phosphatase PP1 to the nucleolus. Involved in regulation of mRNA splicing (By similarity). Inhibits SIPA1 GTPase activity (By similarity). Involved in regulating expression of extracellular matrix genes (By similarity). Associates with chromatin and may play a role in modulating chromatin structure. (758 aa) | ||||
SF3B1 | Splicing factor 3B subunit 1; Involved in pre-mRNA splicing as a component of the splicing factor SF3B complex. SF3B complex is required for 'A' complex assembly formed by the stable binding of U2 snRNP to the branchpoint sequence (BPS) in pre-mRNA. Sequence independent binding of SF3A/SF3B complex upstream of the branch site is essential, it may anchor U2 snRNP to the pre-mRNA. Together with other U2 snRNP complex components may also play a role in the selective processing of microRNAs (miRNAs) from the long primary miRNA transcript, pri-miR-17-92 (By similarity). May also be involved [...] (1304 aa) | ||||
RPL19 | Ribosomal protein L19; Belongs to the eukaryotic ribosomal protein eL19 family. (196 aa) | ||||
CCDC86 | Coiled-coil domain containing 86. (360 aa) | ||||
H1-3 | Histone H1.3; Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Acts also as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). (221 aa) | ||||
H4C6 | Histone H4; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. (103 aa) | ||||
H1-1 | Histone H1.1; Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Acts also as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). (215 aa) | ||||
KRT1 | Keratin, type II cytoskeletal 1; May regulate the activity of kinases such as PKC and SRC via binding to integrin beta-1 (ITB1) and the receptor of activated protein C kinase 1 (RACK1). In complex with C1QBP is a high affinity receptor for kininogen-1/HMWK. (644 aa) | ||||
TRIM28 | Transcription intermediary factor 1-beta; Nuclear corepressor for KRAB domain-containing zinc finger proteins (KRAB-ZFPs). Mediates gene silencing by recruiting CHD3, a subunit of the nucleosome remodeling and deacetylation (NuRD) complex, and SETDB1 (which specifically methylates histone H3 at 'Lys-9' (H3K9me)) to the promoter regions of KRAB target genes. Enhances transcriptional repression by coordinating the increase in H3K9me, the decrease in histone H3 'Lys-9 and 'Lys-14' acetylation (H3K9ac and H3K14ac, respectively) and the disposition of HP1 proteins to silence gene expression [...] (835 aa) | ||||
GFAP | Glial fibrillary acidic protein; GFAP, a class-III intermediate filament, is a cell-specific marker that, during the development of the central nervous system, distinguishes astrocytes from other glial cells. (472 aa) | ||||
UTP3 | Something about silencing protein 10; Essential for gene silencing: has a role in the structure of silenced chromatin. Plays a role in the developing brain (By similarity); Belongs to the SAS10 family. (479 aa) | ||||
H3-3B | Histone H3.3; Variant histone H3 which replaces conventional H3 in a wide range of nucleosomes in active genes. Constitutes the predominant form of histone H3 in non-dividing cells and is incorporated into chromatin independently of DNA synthesis. Deposited at sites of nucleosomal displacement throughout transcribed genes, suggesting that it represents an epigenetic imprint of transcriptionally active chromatin. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in [...] (136 aa) | ||||
EP300 | Histone acetyltransferase p300; Functions as histone acetyltransferase and regulates transcription via chromatin remodeling. Acetylates all four core histones in nucleosomes. Histone acetylation gives an epigenetic tag for transcriptional activation. Mediates cAMP-gene regulation by binding specifically to phosphorylated CREB protein. Mediates acetylation of histone H3 at 'Lys-122' (H3K122ac), a modification that localizes at the surface of the histone octamer and stimulates transcription, possibly by promoting nucleosome instability. Mediates acetylation of histone H3 at 'Lys-27' (H3K [...] (2414 aa) | ||||
RPS11 | Ribosomal protein S11; Belongs to the universal ribosomal protein uS17 family. (158 aa) | ||||
NRGN | NEUG(55-78); Acts as a 'third messenger' substrate of protein kinase C- mediated molecular cascades during synaptic development and remodeling. Binds to calmodulin in the absence of calcium (By similarity). Belongs to the neurogranin family. (78 aa) | ||||
H2AC1 | Histone H2A type 1-A; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. (131 aa) | ||||
H2AC8 | Histone H2A type 1-B/E; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. (130 aa) | ||||
H1-5 | Histone H1.5; Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Acts also as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). (226 aa) | ||||
CXCL10 | C-X-C motif chemokine 10; Pro-inflammatory cytokine that is involved in a wide variety of processes such as chemotaxis, differentiation, and activation of peripheral immune cells, regulation of cell growth, apoptosis and modulation of angiostatic effects. Plays thereby an important role during viral infections by stimulating the activation and migration of immune cells to the infected sites (By similarity). Mechanistically, binding of CXCL10 to the CXCR3 receptor activates G protein-mediated signaling and results in downstream activation of phospholipase C-dependent pathway, an increas [...] (98 aa) | ||||
CXCL8 | Interleukin-8; IL-8 is a chemotactic factor that attracts neutrophils, basophils, and T-cells, but not monocytes. It is also involved in neutrophil activation. It is released from several cell types in response to an inflammatory stimulus. IL-8(6-77) has a 5-10-fold higher activity on neutrophil activation, IL-8(5-77) has increased activity on neutrophil activation and IL-8(7-77) has a higher affinity to receptors CXCR1 and CXCR2 as compared to IL-8(1-77), respectively. (99 aa) | ||||
CXCL11 | C-X-C motif chemokine 11; Chemotactic for interleukin-activated T-cells but not unstimulated T-cells, neutrophils or monocytes. Induces calcium release in activated T-cells. Binds to CXCR3. May play an important role in CNS diseases which involve T-cell recruitment. May play a role in skin immune responses; Belongs to the intercrine alpha (chemokine CxC) family. (94 aa) | ||||
H1-4 | Histone H1.4; Histone H1 protein binds to linker DNA between nucleosomes forming the macromolecular structure known as the chromatin fiber. Histones H1 are necessary for the condensation of nucleosome chains into higher-order structured fibers. Acts also as a regulator of individual gene transcription through chromatin remodeling, nucleosome spacing and DNA methylation (By similarity). (219 aa) | ||||
RPL4 | Ribosomal protein L4. (427 aa) | ||||
RRS1 | Ribosome biogenesis regulatory protein homolog; Involved in ribosomal large subunit assembly. May regulate the localization of the 5S RNP/5S ribonucleoprotein particle to the nucleolus; Belongs to the RRS1 family. (365 aa) | ||||
SRRM1 | Serine/arginine repetitive matrix protein 1; Part of pre- and post-splicing multiprotein mRNP complexes. Involved in numerous pre-mRNA processing events. Promotes constitutive and exonic splicing enhancer (ESE)-dependent splicing activation by bridging together sequence-specific (SR family proteins, SFRS4, SFRS5 and TRA2B/SFRS10) and basal snRNP (SNRP70 and SNRPA1) factors of the spliceosome. Stimulates mRNA 3'-end cleavage independently of the formation of an exon junction complex. Binds both pre-mRNA and spliced mRNA 20-25 nt upstream of exon-exon junctions. Binds RNA and DNA with lo [...] (904 aa) | ||||
H2AC14 | Histone H2A type 1-J; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. (128 aa) | ||||
DNMT3B | DNA (cytosine-5)-methyltransferase 3B; Required for genome-wide de novo methylation and is essential for the establishment of DNA methylation patterns during development. DNA methylation is coordinated with methylation of histones. May preferentially methylates nucleosomal DNA within the nucleosome core region. May function as transcriptional co-repressor by associating with CBX4 and independently of DNA methylation. Seems to be involved in gene silencing (By similarity). In association with DNMT1 and via the recruitment of CTCFL/BORIS, involved in activation of BAG1 gene expression by [...] (853 aa) | ||||
H1-10 | Histone H1x; Histones H1 are necessary for the condensation of nucleosome chains into higher-order structures. (213 aa) | ||||
RPS19BP1 | Active regulator of SIRT1; Direct regulator of SIRT1. Enhances SIRT1-mediated deacetylation of p53/TP53, thereby participating in inhibition of p53/TP53-mediated transcriptional activity. Belongs to the AROS family. (136 aa) | ||||
RAB11B | Ras-related protein Rab-11B; The small GTPases Rab are key regulators of intracellular membrane trafficking, from the formation of transport vesicles to their fusion with membranes. Rabs cycle between an inactive GDP-bound form and an active GTP-bound form that is able to recruit to membranes different set of downstream effectors directly responsible for vesicle formation, movement, tethering and fusion. The small Rab GTPase RAB11B plays a role in endocytic recycling, regulating apical recycling of several transmembrane proteins including cystic fibrosis transmembrane conductance regul [...] (218 aa) | ||||
H3C13 | Histone H3.2; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. (136 aa) | ||||
H2AC21 | Histone H2A type 2-B; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. (130 aa) | ||||
H2AC20 | Histone H2A type 2-C; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. (129 aa) | ||||
H3Y2 | Putative histone H3.X; Primate-specific variant histone H3, which constitutes a core component of nucleosomes. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (Probable). (147 aa) |