Your Input: | |||||
GRIN2D | Glutamate receptor ionotropic, NMDA 2D; Component of NMDA receptor complexes that function as heterotetrameric, ligand-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Channel activation requires binding of the neurotransmitter glutamate to the epsilon subunit, glycine binding to the zeta subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+). Sensitivity to glutamate and channel kinetics depend on the subunit composition. Belongs to the glutamate-gated ion channel (TC 1.A.10.1) family. NR2D/GRIN2D subfamily. (1336 aa) | ||||
HCN4 | Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 4; Hyperpolarization-activated ion channel with very slow activation and inactivation exhibiting weak selectivity for potassium over sodium ions. Contributes to the native pacemaker currents in heart (If) that regulate the rhythm of heart beat. May contribute to the native pacemaker currents in neurons (Ih). May mediate responses to sour stimuli. (1203 aa) | ||||
CHRNB4 | Neuronal acetylcholine receptor subunit beta-4; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane; Belongs to the ligand-gated ion channel (TC 1.A.9) family. Acetylcholine receptor (TC 1.A.9.1) subfamily. Beta-4/CHRNB4 sub- subfamily. (498 aa) | ||||
CHRNA1 | Acetylcholine receptor subunit alpha; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. (482 aa) | ||||
HTR3B | 5-hydroxytryptamine receptor 3B; This is one of the several different receptors for 5- hydroxytryptamine (serotonin), a biogenic hormone that functions as a neurotransmitter, a hormone, and a mitogen. This receptor is a ligand- gated ion channel, which when activated causes fast, depolarizing responses. It is a cation-specific, but otherwise relatively nonselective, ion channel. (441 aa) | ||||
CHRND | Acetylcholine receptor subunit delta; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. Belongs to the ligand-gated ion channel (TC 1.A.9) family. Acetylcholine receptor (TC 1.A.9.1) subfamily. Delta/CHRND sub- subfamily. (517 aa) | ||||
HCN2 | Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 2; Hyperpolarization-activated ion channel exhibiting weak selectivity for potassium over sodium ions. Contributes to the native pacemaker currents in heart (If) and in neurons (Ih). Can also transport ammonium in the distal nephron. Produces a large instantaneous current. Modulated by intracellular chloride ions and pH; acidic pH shifts the activation to more negative voltages (By similarity). (889 aa) | ||||
CNGB1 | Cyclic nucleotide-gated cation channel beta-1; Subunit of cyclic nucleotide-gated (CNG) channels, nonselective cation channels, which play important roles in both visual and olfactory signal transduction. When associated with CNGA1, it is involved in the regulation of ion flow into the rod photoreceptor outer segment (ROS), in response to light-induced alteration of the levels of intracellular cGMP. (1251 aa) | ||||
GABRA1 | Gamma-aminobutyric acid receptor subunit alpha-1; Ligand-gated chloride channel which is a component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the brain. Plays an important role in the formation of functional inhibitory GABAergic synapses in addition to mediating synaptic inhibition as a GABA-gated ion channel. The gamma2 subunit is necessary but not sufficient for a rapid formation of active synaptic contacts and the synaptogenic effect of this subunit is influenced by the type of alpha and beta subunits present in the receptor pentamer (By si [...] (456 aa) | ||||
CHRNA7 | Neuronal acetylcholine receptor subunit alpha-7; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. The channel is blocked by alpha-bungarotoxin. (531 aa) | ||||
GLRA1 | Glycine receptor subunit alpha-1; Glycine receptors are ligand-gated chloride channels. Channel opening is triggered by extracellular glycine. Channel opening is also triggered by taurine and beta- alanine. Channel characteristics depend on the subunit composition; heteropentameric channels are activated by lower glycine levels and display faster desensitization. Plays an important role in the down-regulation of neuronal excitability. Contributes to the generation of inhibitory postsynaptic currents. Channel activity is potentiated by ethanol. Potentiation of channel activity by intoxi [...] (457 aa) | ||||
P2RX6 | P2X purinoceptor 6; Receptor for ATP that acts as a ligand-gated ion channel. Belongs to the P2X receptor family. (441 aa) | ||||
CHRNG | Acetylcholine receptor subunit gamma; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. (517 aa) | ||||
CHRNE | Acetylcholine receptor subunit epsilon; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. (493 aa) | ||||
RYR3 | Ryanodine receptor 3; Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm in muscle and thereby plays a role in triggering muscle contraction. May regulate Ca(2+) release by other calcium channels. Calcium channel that mediates Ca(2+)-induced Ca(2+) release from the endoplasmic reticulum in non-muscle cells. Contributes to cellular calcium ion homeostasis (By similarity). Plays a role in cellular calcium signaling. (4870 aa) | ||||
GRIA3 | Glutamate receptor 3; Receptor for glutamate that functions as ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inactive state, characterized by the presence of [...] (894 aa) | ||||
CNGA1 | cGMP-gated cation channel alpha-1; Subunit of the rod cyclic GMP-gated cation channel, which is involved in the final stage of the phototransduction pathway. When light hits rod photoreceptors, cGMP concentrations decrease causing rapid closure of CNGA1/CNGB1 channels and, therefore, hyperpolarization of the membrane potential. (759 aa) | ||||
CHRNA10 | Neuronal acetylcholine receptor subunit alpha-10; Ionotropic receptor with a probable role in the modulation of auditory stimuli. Agonist binding may induce an extensive change in conformation that affects all subunits and leads to opening of an ion- conducting channel across the plasma membrane. The channel is permeable to a range of divalent cations including calcium, the influx of which may activate a potassium current which hyperpolarizes the cell membrane. In the ear, this may lead to a reduction in basilar membrane motion, altering the activity of auditory nerve fibers and reduci [...] (450 aa) | ||||
GRIN3B | Glutamate receptor ionotropic, NMDA 3B; NMDA receptor subtype of glutamate-gated ion channels with reduced single-channel conductance, low calcium permeability and low voltage-dependent sensitivity to magnesium. Mediated by glycine. (1043 aa) | ||||
P2RX1 | P2X purinoceptor 1; Ligand-gated ion channel with relatively high calcium permeability. Binding to ATP mediates synaptic transmission between neurons and from neurons to smooth muscle. Seems to be linked to apoptosis, by increasing the intracellular concentration of calcium in the presence of ATP, leading to programmed cell death (By similarity). (399 aa) | ||||
P2RX5 | P2X purinoceptor 5; Receptor for ATP that acts as a ligand-gated ion channel; Belongs to the P2X receptor family. (422 aa) | ||||
GLRA2 | Glycine receptor subunit alpha-2; Glycine receptors are ligand-gated chloride channels. Channel opening is triggered by extracellular glycine. Channel opening is also triggered by taurine and beta-alanine. Plays a role in the down-regulation of neuronal excitability. Contributes to the generation of inhibitory postsynaptic currents. Plays a role in cellular responses to ethanol. (452 aa) | ||||
TRPM5 | Transient receptor potential cation channel subfamily M member 5; Voltage-modulated Ca(2+)-activated, monovalent cation channel (VCAM) that mediates a transient membrane depolarization and plays a central role in taste transduction. Monovalent-specific, non-selective cation channel that mediates the transport of Na(+), K(+) and Cs(+) ions equally well. Activated directly by increases in intracellular Ca(2+), but is impermeable to it. Gating is voltage-dependent and displays rapid activation and deactivation kinetics upon channel stimulation even during sustained elevations in Ca(2+). A [...] (1165 aa) | ||||
HTR3E | 5-hydroxytryptamine receptor 3E; This is one of the several different receptors for 5- hydroxytryptamine (serotonin), a biogenic hormone that functions as a neurotransmitter, a hormone, and a mitogen. This receptor is a ligand- gated ion channel, which when activated causes fast, depolarizing responses. It is a cation-specific, but otherwise relatively nonselective, ion channel; Belongs to the ligand-gated ion channel (TC 1.A.9) family. 5-hydroxytryptamine receptor (TC 1.A.9.2) subfamily. HTR3E sub- subfamily. (482 aa) | ||||
GRIK4 | Glutamate receptor ionotropic, kainate 4; Receptor for glutamate. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. The postsynaptic actions of Glu are mediated by a variety of receptors that are named according to their selective agonists. (956 aa) | ||||
TRPM1 | Transient receptor potential cation channel subfamily M member 1; Cation channel essential for the depolarizing photoresponse of retinal ON bipolar cells. It is part of the GRM6 signaling cascade. May play a role in metastasis suppression (By similarity). May act as a spontaneously active, calcium-permeable plasma membrane channel. (1642 aa) | ||||
RYR1 | Ryanodine receptor 1; Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering muscle contraction following depolarization of T-tubules. Repeated very high-level exercise increases the open probability of the channel and leads to Ca(2+) leaking into the cytoplasm. Can also mediate the release of Ca(2+) from intracellular stores in neurons, and may thereby promote prolonged Ca(2+) signaling in the brain. Required for normal embryonic development of muscle fibers and skeletal muscle. Required for nor [...] (5038 aa) | ||||
GRIN2B | Glutamate receptor ionotropic, NMDA 2B; Component of NMDA receptor complexes that function as heterotetrameric, ligand-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Channel activation requires binding of the neurotransmitter glutamate to the epsilon subunit, glycine binding to the zeta subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+). Sensitivity to glutamate and channel kinetics depend on the subunit composition. In concert with DAPK1 at extrasynaptic sites, acts as a central mediator for stroke damage. [...] (1484 aa) | ||||
GRIK2 | Glutamate receptor ionotropic, kainate 2; Ionotropic glutamate receptor. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inactive state, characterized by the presence of bound agonist. May be involved in the transmission of light information from the retina to the hypothalamus. M [...] (908 aa) | ||||
CHRNA2 | Neuronal acetylcholine receptor subunit alpha-2; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane; Belongs to the ligand-gated ion channel (TC 1.A.9) family. Acetylcholine receptor (TC 1.A.9.1) subfamily. Alpha-2/CHRNA2 sub- subfamily. (529 aa) | ||||
P2RX7 | P2X purinoceptor 7; Receptor for ATP that acts as a ligand-gated ion channel. Responsible for ATP-dependent lysis of macrophages through the formation of membrane pores permeable to large molecules. Could function in both fast synaptic transmission and the ATP-mediated lysis of antigen-presenting cells. In the absence of its natural ligand, ATP, functions as a scavenger receptor in the recognition and engulfment of apoptotic cells. (595 aa) | ||||
GRID1 | Glutamate receptor ionotropic, delta-1; Receptor for glutamate. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. The postsynaptic actions of Glu are mediated by a variety of receptors that are named according to their selective agonists; Belongs to the glutamate-gated ion channel (TC 1.A.10.1) family. GRID1 subfamily. (1009 aa) | ||||
CNGA2 | Cyclic nucleotide-gated olfactory channel; Odorant signal transduction is probably mediated by a G- protein coupled cascade using cAMP as second messenger. The olfactory channel can be shown to be activated by cyclic nucleotides which leads to a depolarization of olfactory sensory neurons; Belongs to the cyclic nucleotide-gated cation channel (TC 1.A.1.5) family. CNGA2 subfamily. (664 aa) | ||||
GRIK1 | Glutamate receptor ionotropic, kainate 1; Ionotropic glutamate receptor. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inactive state, characterized by the presence of bound agonist. May be involved in the transmission of light information from the retina to the hypothalamus. (949 aa) | ||||
HTR3C | 5-hydroxytryptamine receptor 3C; This is one of the several different receptors for 5- hydroxytryptamine (serotonin), a biogenic hormone that functions as a neurotransmitter, a hormone, and a mitogen. This receptor is a ligand- gated ion channel, which when activated causes fast, depolarizing responses. It is a cation-specific, but otherwise relatively nonselective, ion channel. (447 aa) | ||||
CNGB3 | Cyclic nucleotide-gated cation channel beta-3; Visual signal transduction is mediated by a G-protein coupled cascade using cGMP as second messenger. This protein can be activated by cGMP which leads to an opening of the cation channel and thereby causing a depolarization of rod photoreceptors. Induced a flickering channel gating, weakened the outward rectification in the presence of extracellular calcium, increased sensitivity for L-cis diltiazem and enhanced the cAMP efficiency of the channel when coexpressed with CNGA3 (By similarity). Essential for the generation of light-evoked ele [...] (809 aa) | ||||
CHRNA3 | Neuronal acetylcholine receptor subunit alpha-3; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. (505 aa) | ||||
CHRNA9 | Neuronal acetylcholine receptor subunit alpha-9; Ionotropic receptor with a probable role in the modulation of auditory stimuli. Agonist binding induces a conformation change that leads to the opening of an ion-conducting channel across the plasma membrane. The channel is permeable to a range of divalent cations including calcium, the influx of which may activate a potassium current which hyperpolarizes the cell membrane. In the ear, this may lead to a reduction in basilar membrane motion, altering the activity of auditory nerve fibers and reducing the range of dynamic hearing. This ma [...] (479 aa) | ||||
GABRB3 | Gamma-aminobutyric acid receptor subunit beta-3; Ligand-gated chloride channel which is a component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the brain. Plays an important role in the formation of functional inhibitory GABAergic synapses in addition to mediating synaptic inhibition as a GABA-gated ion channel. The gamma2 subunit is necessary but not sufficient for a rapid formation of active synaptic contacts and the synaptogenic effect of this subunit is influenced by the type of alpha and beta subunits present in the receptor pentamer (By sim [...] (473 aa) | ||||
HCN1 | Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 1; Hyperpolarization-activated ion channel exhibiting weak selectivity for potassium over sodium ions. Contributes to the native pacemaker currents in heart (If) and in neurons (Ih). May mediate responses to sour stimuli. (890 aa) | ||||
ITPR1 | Inositol 1,4,5-trisphosphate receptor type 1; Intracellular channel that mediates calcium release from the endoplasmic reticulum following stimulation by inositol 1,4,5- trisphosphate. Involved in the regulation of epithelial secretion of electrolytes and fluid through the interaction with AHCYL1 (By similarity). Plays a role in ER stress-induced apoptosis. Cytoplasmic calcium released from the ER triggers apoptosis by the activation of CaM kinase II, eventually leading to the activation of downstream apoptosis pathways (By similarity). (2743 aa) | ||||
CHRNB1 | Acetylcholine receptor subunit beta; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. Belongs to the ligand-gated ion channel (TC 1.A.9) family. Acetylcholine receptor (TC 1.A.9.1) subfamily. Beta-1/CHRNB1 sub- subfamily. (501 aa) | ||||
GRIK5 | Glutamate receptor ionotropic, kainate 5; Receptor for glutamate. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. The postsynaptic actions of Glu are mediated by a variety of receptors that are named according to their selective agonists. This receptor binds kainate > quisqualate > domoate > L-glutamate >> AMPA >> NMDA = 1S,3R- ACPD; Belongs to the glutamate-gated ion channel (TC 1.A.10.1) family. GRIK5 subfamily. (981 aa) | ||||
CHRNA5 | Neuronal acetylcholine receptor subunit alpha-5; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. (468 aa) | ||||
GRIA2 | Glutamate receptor 2; Receptor for glutamate that functions as ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inactive state, characterized by the presence of [...] (883 aa) | ||||
GABRB1 | Gamma-aminobutyric acid receptor subunit beta-1; Component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the vertebrate brain. Functions also as histamine receptor and mediates cellular responses to histamine. Functions as receptor for diazepines and various anesthetics, such as pentobarbital; these are bound at a separate allosteric effector binding site. Functions as ligand-gated chloride channel. (474 aa) | ||||
HTR3A | 5-hydroxytryptamine receptor 3A; This is one of the several different receptors for 5- hydroxytryptamine (serotonin), a biogenic hormone that functions as a neurotransmitter, a hormone, and a mitogen. This receptor is a ligand- gated ion channel, which when activated causes fast, depolarizing responses in neurons. It is a cation-specific, but otherwise relatively nonselective, ion channel. (516 aa) | ||||
P2RX2 | P2X purinoceptor 2; Ion channel gated by extracellular ATP involved in a variety of cellular responses, such as excitatory postsynaptic responses in sensory neurons, neuromuscular junctions (NMJ) formation, hearing, perception of taste and peristalsis. In the inner ear, regulates sound transduction and auditory neurotransmission, outer hair cell electromotility, inner ear gap junctions, and K(+) recycling. Mediates synaptic transmission between neurons and from neurons to smooth muscle. (497 aa) | ||||
ZACN | Zinc-activated ligand-gated ion channel; Zinc-activated ligand-gated ion channel. (412 aa) | ||||
GRIN2A | Glutamate receptor ionotropic, NMDA 2A; Component of NMDA receptor complexes that function as heterotetrameric, ligand-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Channel activation requires binding of the neurotransmitter glutamate to the epsilon subunit, glycine binding to the zeta subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+). Sensitivity to glutamate and channel kinetics depend on the subunit composition; channels containing GRIN1 and GRIN2A have higher sensitivity to glutamate and faster kineti [...] (1464 aa) | ||||
GRIN2C | Glutamate receptor ionotropic, NMDA 2C; Component of NMDA receptor complexes that function as heterotetrameric, ligand-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Channel activation requires binding of the neurotransmitter glutamate to the epsilon subunit, glycine binding to the zeta subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+). Sensitivity to glutamate and channel kinetics depend on the subunit composition (Probable). Plays a role in regulating the balance between excitatory and inhibitory activit [...] (1233 aa) | ||||
CHRNB3 | Neuronal acetylcholine receptor subunit beta-3; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. (458 aa) | ||||
GRIA4 | Glutamate receptor 4; Receptor for glutamate that functions as ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inactive state, characterized by the presence of [...] (902 aa) | ||||
GRID2 | Glutamate receptor ionotropic, delta-2; Receptor for glutamate. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. The postsynaptic actions of Glu are mediated by a variety of receptors that are named according to their selective agonists. Promotes synaptogenesis and mediates the D-Serine-dependent long term depression signals and AMPA receptor endocytosis of cerebellar parallel fiber- Purkinje cell (PF-PC) synapses through the beta-NRX1-CBLN1-GRID2 triad complex ; Belongs to the glutamate-gated ion channel (TC 1.A.10.1) family. GRID2 sub [...] (1007 aa) | ||||
CHRNA6 | Neuronal acetylcholine receptor subunit alpha-6; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane; Belongs to the ligand-gated ion channel (TC 1.A.9) family. Acetylcholine receptor (TC 1.A.9.1) subfamily. Alpha-6/CHRNA6 sub- subfamily. (494 aa) | ||||
GABRB2 | Gamma-aminobutyric acid receptor subunit beta-2; Ligand-gated chloride channel which is a component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the brain. Plays an important role in the formation of functional inhibitory GABAergic synapses in addition to mediating synaptic inhibition as a GABA-gated ion channel. The gamma2 subunit is necessary but not sufficient for a rapid formation of active synaptic contacts and the synaptogenic effect of this subunit is influenced by the type of alpha and beta subunits present in the receptor pentamer (By sim [...] (512 aa) | ||||
GABRA6 | Gamma-aminobutyric acid receptor subunit alpha-6; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. (453 aa) | ||||
GLRA3 | Glycine receptor subunit alpha-3; Glycine receptors are ligand-gated chloride channels. Channel opening is triggered by extracellular glycine. Channel characteristics depend on the subunit composition; heteropentameric channels display faster channel closure (By similarity). Plays an important role in the down-regulation of neuronal excitability (By similarity). Contributes to the generation of inhibitory postsynaptic currents (By similarity). Contributes to increased pain perception in response to increased prostaglandin E2 levels (By similarity). Plays a role in cellular responses to [...] (464 aa) | ||||
CNGA3 | Cyclic nucleotide-gated cation channel alpha-3; Visual signal transduction is mediated by a G-protein coupled cascade using cGMP as second messenger. This protein can be activated by cyclic GMP which leads to an opening of the cation channel and thereby causing a depolarization of cone photoreceptors. Induced a flickering channel gating, weakened the outward rectification in the presence of extracellular calcium, increased sensitivity for L-cis diltiazem and enhanced the cAMP efficacy of the channel when coexpressed with CNGB3 (By similarity). Essential for the generation of light-evok [...] (694 aa) | ||||
GLRB | Glycine receptor subunit beta; Glycine receptors are ligand-gated chloride channels. GLRB does not form ligand-gated ion channels by itself, but is part of heteromeric ligand-gated chloride channels. Channel opening is triggered by extracellular glycine. Heteropentameric channels composed of GLRB and GLRA1 are activated by lower glycine levels than homopentameric GLRA1. Plays an important role in the down-regulation of neuronal excitability. Contributes to the generation of inhibitory postsynaptic currents. (497 aa) | ||||
GABRA4 | Gamma-aminobutyric acid receptor subunit alpha-4; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel; Belongs to the ligand-gated ion channel (TC 1.A.9) family. Gamma-aminobutyric acid receptor (TC 1.A.9.5) subfamily. GABRA4 sub- subfamily. (554 aa) | ||||
P2RX3 | P2X purinoceptor 3; Receptor for ATP that acts as a ligand-gated cation channel. Plays a role in sensory perception. Required for normal perception of pain. Required for normal taste perception (By similarity). (397 aa) | ||||
GABRA5 | Gamma-aminobutyric acid receptor subunit alpha-5; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. (462 aa) | ||||
HTR3D | 5-hydroxytryptamine receptor 3D; This is one of the several different receptors for 5- hydroxytryptamine (serotonin), a biogenic hormone that functions as a neurotransmitter, a hormone, and a mitogen. This receptor is a ligand- gated ion channel, which when activated causes fast, depolarizing responses. It is a cation-specific, but otherwise relatively nonselective, ion channel; Belongs to the ligand-gated ion channel (TC 1.A.9) family. 5-hydroxytryptamine receptor (TC 1.A.9.2) subfamily. HTR3D sub- subfamily. (454 aa) | ||||
ITPR2 | Inositol 1,4,5-trisphosphate receptor type 2; Receptor for inositol 1,4,5-trisphosphate, a second messenger that mediates the release of intracellular calcium. This release is regulated by cAMP both dependently and independently of PKA (By similarity). (2701 aa) | ||||
CNGA4 | Cyclic nucleotide-gated cation channel alpha-4; Second messenger, cAMP, causes the opening of cation- selective cyclic nucleotide-gated (CNG) channels and depolarization of the neuron (olfactory sensory neurons, OSNs). CNGA4 is the modulatory subunit of this channel which is known to play a central role in the transduction of odorant signals and subsequent adaptation. By accelerating the calcium-mediated negative feedback in olfactory signaling it allows rapid adaptation to odor stimulation and extends its range of odor detection (By similarity). (575 aa) | ||||
ITPR3 | Inositol 1,4,5-trisphosphate receptor type 3; Receptor for inositol 1,4,5-trisphosphate, a second messenger that mediates the release of intracellular calcium. (2671 aa) | ||||
GRIK3 | Glutamate receptor ionotropic, kainate 3; Receptor for glutamate that functions as ligand-gated ion channel in the central nervous system and plays an important role in excitatory synaptic transmission. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. The postsynaptic actions of Glu are mediated by a variety of receptors that are named according to their selective agonists. This receptor binds domoate > kainate >> L-glutamate = quisqualate >> AMPA = NMDA. (919 aa) | ||||
GRIN1 | Glutamate receptor ionotropic, NMDA 1; Component of NMDA receptor complexes that function as heterotetrameric, ligand-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Channel activation requires binding of the neurotransmitter glutamate to the epsilon subunit, glycine binding to the zeta subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+). Sensitivity to glutamate and channel kinetics depend on the subunit composition. (943 aa) | ||||
GABRA3 | Gamma-aminobutyric acid receptor subunit alpha-3; GABA, the major inhibitory neurotransmitter in the vertebrate brain, mediates neuronal inhibition by binding to the GABA/benzodiazepine receptor and opening an integral chloride channel. (492 aa) | ||||
CHRNA4 | Neuronal acetylcholine receptor subunit alpha-4; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane permeable to sodium ions; Belongs to the ligand-gated ion channel (TC 1.A.9) family. Acetylcholine receptor (TC 1.A.9.1) subfamily. Alpha-4/CHRNA4 sub- subfamily. (627 aa) | ||||
CHRNB2 | Neuronal acetylcholine receptor subunit beta-2; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane permeable to sodiun ions. (502 aa) | ||||
HCN3 | Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 3; Hyperpolarization-activated potassium channel. May also facilitate the permeation of sodium ions. (774 aa) | ||||
RYR2 | Ryanodine receptor 2; Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering cardiac muscle contraction. Aberrant channel activation can lead to cardiac arrhythmia. In cardiac myocytes, calcium release is triggered by increased Ca(2+) levels due to activation of the L-type calcium channel CACNA1C. The calcium channel activity is modulated by formation of heterotetramers with RYR3. Required for cellular calcium ion homeostasis. Required for embryonic heart development. Belongs to the ryanodine rec [...] (4967 aa) | ||||
GRIN3A | Glutamate receptor ionotropic, NMDA 3A; NMDA receptor subtype of glutamate-gated ion channels with reduced single-channel conductance, low calcium permeability and low voltage-dependent sensitivity to magnesium. Mediated by glycine. May play a role in the development of dendritic spines. May play a role in PPP2CB-NMDAR mediated signaling mechanism (By similarity). (1115 aa) | ||||
P2RX4 | P2X purinoceptor 4; Receptor for ATP that acts as a ligand-gated ion channel. This receptor is insensitive to the antagonists PPADS and suramin. (404 aa) | ||||
GABRA2 | Gamma-aminobutyric acid receptor subunit alpha-2; Ligand-gated chloride channel which is a component of the heteropentameric receptor for GABA, the major inhibitory neurotransmitter in the brain (By similarity). Plays an important role in the formation of functional inhibitory GABAergic synapses in addition to mediating synaptic inhibition as a GABA-gated ion channel (By similarity). The gamma2 subunit is necessary but not sufficient for a rapid formation of active synaptic contacts and the synaptogenic effect of this subunit is influenced by the type of alpha and beta subunits present [...] (511 aa) | ||||
GRIA1 | Glutamate receptor 1; Ionotropic glutamate receptor. L-glutamate acts as an excitatory neurotransmitter at many synapses in the central nervous system. Binding of the excitatory neurotransmitter L-glutamate induces a conformation change, leading to the opening of the cation channel, and thereby converts the chemical signal to an electrical impulse. The receptor then desensitizes rapidly and enters a transient inactive state, characterized by the presence of bound agonist. In the presence of CACNG4 or CACNG7 or CACNG8, shows resensitization which is characterized by a delayed accumulati [...] (916 aa) |