STRINGSTRING
TAS1R2 TAS1R2 GRM4 GRM4 GPR179 GPR179 GRM6 GRM6 GPRC5C GPRC5C GPR158 GPR158 GABBR1 GABBR1 GRM2 GRM2 GPR156 GPR156 GPRC5A GPRC5A CASR CASR GPRC5D GPRC5D GABBR2 GABBR2 GRM1 GRM1 GPRC5B GPRC5B GRM5 GRM5 GPRC6A GPRC6A TAS1R1 TAS1R1 TAS1R3 TAS1R3 GRM7 GRM7 GRM8 GRM8 GRM3 GRM3
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
TAS1R2Taste receptor type 1 member 2; Putative taste receptor. TAS1R2/TAS1R3 recognizes diverse natural and synthetic sweeteners. (839 aa)
GRM4Metabotropic glutamate receptor 4; G-protein coupled receptor for glutamate. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors. Signaling inhibits adenylate cyclase activity. (912 aa)
GPR179Probable G-protein coupled receptor 179; Orphan receptor, involved in vision. Required for signal transduction through retinal depolarizing bipolar cells. Belongs to the G-protein coupled receptor 3 family. (2367 aa)
GRM6Metabotropic glutamate receptor 6; G-protein coupled receptor for glutamate. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase activity (By similarity). Signaling stimulates TRPM1 channel activity and Ca(2+) uptake. Required for normal vision. (877 aa)
GPRC5CG-protein coupled receptor family C group 5 member C; This retinoic acid-inducible G-protein coupled receptor provide evidence for a possible interaction between retinoid and G- protein signaling pathways. (486 aa)
GPR158Probable G-protein coupled receptor 158; Orphan receptor; Belongs to the G-protein coupled receptor 3 family. (1215 aa)
GABBR1Gamma-aminobutyric acid type B receptor subunit 1; Component of a heterodimeric G-protein coupled receptor for GABA, formed by GABBR1 and GABBR2. Within the heterodimeric GABA receptor, only GABBR1 seems to bind agonists, while GABBR2 mediates coupling to G proteins. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase, stimulates phospholipase A2, activates potassium channels, inactivates voltage-depend [...] (961 aa)
GRM2Metabotropic glutamate receptor 2; G-protein coupled receptor for glutamate. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase activity. May mediate suppression of neurotransmission or may be involved in synaptogenesis or synaptic stabilization. (872 aa)
GPR156Probable G-protein coupled receptor 156; Orphan receptor; Belongs to the G-protein coupled receptor 3 family. GABA-B receptor subfamily. (814 aa)
GPRC5ARetinoic acid-induced protein 3; Orphan receptor. Could be involved in modulating differentiation and maintaining homeostasis of epithelial cells. This retinoic acid-inducible GPCR provide evidence for a possible interaction between retinoid and G-protein signaling pathways. Functions as a negative modulator of EGFR signaling (By similarity). May act as a lung tumor suppressor. (357 aa)
CASRExtracellular calcium-sensing receptor; G-protein-coupled receptor that senses changes in the extracellular concentration of calcium ions and plays a key role in maintaining calcium homeostasis. Senses fluctuations in the circulating calcium concentration and modulates the production of parathyroid hormone (PTH) in parathyroid glands (By similarity). The activity of this receptor is mediated by a G-protein that activates a phosphatidylinositol-calcium second messenger system. The G-protein-coupled receptor activity is activated by a co-agonist mechanism: aromatic amino acids, such as T [...] (1088 aa)
GPRC5DG protein-coupled receptor class C group 5 member D; Belongs to the G-protein coupled receptor 3 family. (345 aa)
GABBR2Gamma-aminobutyric acid type B receptor subunit 2; Component of a heterodimeric G-protein coupled receptor for GABA, formed by GABBR1 and GABBR2. Within the heterodimeric GABA receptor, only GABBR1 seems to bind agonists, while GABBR2 mediates coupling to G proteins. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase, stimulates phospholipase A2, activates potassium channels, inactivates voltage-depend [...] (941 aa)
GRM1Metabotropic glutamate receptor 1; G-protein coupled receptor for glutamate. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors. Signaling activates a phosphatidylinositol- calcium second messenger system. May participate in the central action of glutamate in the CNS, such as long-term potentiation in the hippocampus and long-term depression in the cerebellum. May function in the light response in the retina (By similarity). (1194 aa)
GPRC5BG-protein coupled receptor family C group 5 member B; Unknown. This retinoic acid-inducible G-protein coupled receptor provide evidence for a possible interaction between retinoid and G-protein signaling pathways. (403 aa)
GRM5Metabotropic glutamate receptor 5; G-protein coupled receptor for glutamate. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors. Signaling activates a phosphatidylinositol- calcium second messenger system and generates a calcium-activated chloride current. Plays an important role in the regulation of synaptic plasticity and the modulation of the neural network activity. (1212 aa)
GPRC6AG-protein coupled receptor family C group 6 member A; Receptor activated by amino acids with a preference for basic amino acids such as L-Lys, L-Arg and L-ornithine but also by small and polar amino acids. The L-alpha amino acids respond is augmented by divalent cations Ca(2+) and Mg(2+). Activated by extracellular calcium and osteocalcin. Seems to act through a G(q)/G(11) and G(i)-coupled pathway. Mediates the non-genomic effects of androgens in multiple tissue. May coordinate nutritional and hormonal anabolic signals through the sensing of extracellular amino acids, osteocalcin, diva [...] (926 aa)
TAS1R1Taste receptor type 1 member 1; Putative taste receptor. TAS1R1/TAS1R3 responds to the umami taste stimulus (the taste of monosodium glutamate). Sequence differences within and between species can significantly influence the selectivity and specificity of taste responses. (841 aa)
TAS1R3Taste receptor type 1 member 3; Putative taste receptor. TAS1R1/TAS1R3 responds to the umami taste stimulus (the taste of monosodium glutamate). TAS1R2/TAS1R3 recognizes diverse natural and synthetic sweeteners. TAS1R3 is essential for the recognition and response to the disaccharide trehalose (By similarity). Sequence differences within and between species can significantly influence the selectivity and specificity of taste responses. (852 aa)
GRM7Metabotropic glutamate receptor 7; G-protein coupled receptor for glutamate. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase activity. (915 aa)
GRM8Metabotropic glutamate receptor 8; G-protein coupled receptor for glutamate. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase activity. (908 aa)
GRM3Metabotropic glutamate receptor 3; G-protein coupled receptor for glutamate. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors. Signaling inhibits adenylate cyclase activity. (879 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (16%) [HD]