STRINGSTRING
JPH2 JPH2 JPH1 JPH1 JPH3 JPH3 SETD7 SETD7 MORN1 MORN1 RSPH1 RSPH1 MORN5 MORN5
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
JPH2Junctophilin-2 N-terminal fragment; [Junctophilin-2]: Membrane-binding protein that provides a structural bridge between the plasma membrane and the sarcoplasmic reticulum and is required for normal excitation-contraction coupling in cardiomyocytes. Provides a structural foundation for functional cross-talk between the cell surface and intracellular Ca(2+) release channels by maintaining the 12-15 nm gap between the sarcolemma and the sarcoplasmic reticulum membranes in the cardiac dyads (By similarity). Necessary for proper intracellular Ca(2+) signaling in cardiac myocytes via its in [...] (696 aa)
JPH1Junctophilin-1; Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH1 contributes to the construction of the skeletal muscle triad by linking the t-tubule (transverse-tubule) and SR (sarcoplasmic reticulum) membranes. (661 aa)
JPH3Junctophilin-3; Junctophilins contribute to the formation of junctional membrane complexes (JMCs) which link the plasma membrane with the endoplasmic or sarcoplasmic reticulum in excitable cells. Provides a structural foundation for functional cross-talk between the cell surface and intracellular calcium release channels. JPH3 is brain- specific and appears to have an active role in certain neurons involved in motor coordination and memory. (748 aa)
SETD7Histone-lysine N-methyltransferase SETD7; Histone methyltransferase that specifically monomethylates 'Lys-4' of histone H3. H3 'Lys-4' methylation represents a specific tag for epigenetic transcriptional activation. Plays a central role in the transcriptional activation of genes such as collagenase or insulin. Recruited by IPF1/PDX-1 to the insulin promoter, leading to activate transcription. Has also methyltransferase activity toward non-histone proteins such as p53/TP53, TAF10, and possibly TAF7 by recognizing and binding the [KR]-[STA]-K in substrate proteins. Monomethylates 'Lys- 1 [...] (366 aa)
MORN1MORN repeat containing 1. (497 aa)
RSPH1Radial spoke head 1 homolog; May play an important role in male meiosis (By similarity). It is necessary for proper building of the axonemal central pair and radial spokes. (309 aa)
MORN5MORN repeat containing 5. (161 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (16%) [HD]