node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ALDOA | CKB | ENSP00000496166 | ENSP00000299198 | Fructose-bisphosphate aldolase A; Plays a key role in glycolysis and gluconeogenesis. In addition, may also function as scaffolding protein (By similarity). Belongs to the class I fructose-bisphosphate aldolase family. | Creatine kinase B-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | 0.587 |
ALDOA | CKMT1B | ENSP00000496166 | ENSP00000300283 | Fructose-bisphosphate aldolase A; Plays a key role in glycolysis and gluconeogenesis. In addition, may also function as scaffolding protein (By similarity). Belongs to the class I fructose-bisphosphate aldolase family. | Creatine kinase U-type, mitochondrial; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | 0.413 |
ALDOA | CKMT2 | ENSP00000496166 | ENSP00000404203 | Fructose-bisphosphate aldolase A; Plays a key role in glycolysis and gluconeogenesis. In addition, may also function as scaffolding protein (By similarity). Belongs to the class I fructose-bisphosphate aldolase family. | Creatine kinase S-type, mitochondrial; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa; Belongs to the ATP:guanido phosphotransferase family. | 0.602 |
ALDOA | ENO3 | ENSP00000496166 | ENSP00000324105 | Fructose-bisphosphate aldolase A; Plays a key role in glycolysis and gluconeogenesis. In addition, may also function as scaffolding protein (By similarity). Belongs to the class I fructose-bisphosphate aldolase family. | Beta-enolase; Appears to have a function in striated muscle development and regeneration; Belongs to the enolase family. | 0.972 |
ALDOA | GAPDH | ENSP00000496166 | ENSP00000380070 | Fructose-bisphosphate aldolase A; Plays a key role in glycolysis and gluconeogenesis. In addition, may also function as scaffolding protein (By similarity). Belongs to the class I fructose-bisphosphate aldolase family. | Glyceraldehyde-3-phosphate dehydrogenase; Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Participates in nuclear events including transcription, RNA transport, DNA replication and apoptosis. Nuclear functions are probably due to the nitrosylase activity that mediates cysteine S-nitrosylation of nuclear target proteins such as SIRT1, HDAC2 and PRKDC. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations throu [...] | 0.999 |
ALDOA | PYGB | ENSP00000496166 | ENSP00000216962 | Fructose-bisphosphate aldolase A; Plays a key role in glycolysis and gluconeogenesis. In addition, may also function as scaffolding protein (By similarity). Belongs to the class I fructose-bisphosphate aldolase family. | Glycogen phosphorylase, brain form; Glycogen phosphorylase that regulates glycogen mobilization. Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties. | 0.525 |
ALDOA | PYGL | ENSP00000496166 | ENSP00000216392 | Fructose-bisphosphate aldolase A; Plays a key role in glycolysis and gluconeogenesis. In addition, may also function as scaffolding protein (By similarity). Belongs to the class I fructose-bisphosphate aldolase family. | Glycogen phosphorylase, liver form; Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties. | 0.561 |
ALDOA | PYGM | ENSP00000496166 | ENSP00000164139 | Fructose-bisphosphate aldolase A; Plays a key role in glycolysis and gluconeogenesis. In addition, may also function as scaffolding protein (By similarity). Belongs to the class I fructose-bisphosphate aldolase family. | Glycogen phosphorylase, muscle form; Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties. | 0.733 |
CKB | ALDOA | ENSP00000299198 | ENSP00000496166 | Creatine kinase B-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | Fructose-bisphosphate aldolase A; Plays a key role in glycolysis and gluconeogenesis. In addition, may also function as scaffolding protein (By similarity). Belongs to the class I fructose-bisphosphate aldolase family. | 0.587 |
CKB | CKM | ENSP00000299198 | ENSP00000221476 | Creatine kinase B-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | Creatine kinase M-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | 0.996 |
CKB | GAPDH | ENSP00000299198 | ENSP00000380070 | Creatine kinase B-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | Glyceraldehyde-3-phosphate dehydrogenase; Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Participates in nuclear events including transcription, RNA transport, DNA replication and apoptosis. Nuclear functions are probably due to the nitrosylase activity that mediates cysteine S-nitrosylation of nuclear target proteins such as SIRT1, HDAC2 and PRKDC. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations throu [...] | 0.463 |
CKB | MYL1 | ENSP00000299198 | ENSP00000307280 | Creatine kinase B-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | Myosin light chain 1/3, skeletal muscle isoform; Non-regulatory myosin light chain required for proper formation and/or maintenance of myofibers, and thus appropriate muscle function. | 0.539 |
CKM | CKB | ENSP00000221476 | ENSP00000299198 | Creatine kinase M-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | Creatine kinase B-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | 0.996 |
CKM | CKMT1B | ENSP00000221476 | ENSP00000300283 | Creatine kinase M-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | Creatine kinase U-type, mitochondrial; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | 0.611 |
CKM | CKMT2 | ENSP00000221476 | ENSP00000404203 | Creatine kinase M-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | Creatine kinase S-type, mitochondrial; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa; Belongs to the ATP:guanido phosphotransferase family. | 0.866 |
CKM | ENO3 | ENSP00000221476 | ENSP00000324105 | Creatine kinase M-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | Beta-enolase; Appears to have a function in striated muscle development and regeneration; Belongs to the enolase family. | 0.843 |
CKM | GAPDH | ENSP00000221476 | ENSP00000380070 | Creatine kinase M-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | Glyceraldehyde-3-phosphate dehydrogenase; Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Participates in nuclear events including transcription, RNA transport, DNA replication and apoptosis. Nuclear functions are probably due to the nitrosylase activity that mediates cysteine S-nitrosylation of nuclear target proteins such as SIRT1, HDAC2 and PRKDC. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations throu [...] | 0.515 |
CKM | MYL1 | ENSP00000221476 | ENSP00000307280 | Creatine kinase M-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | Myosin light chain 1/3, skeletal muscle isoform; Non-regulatory myosin light chain required for proper formation and/or maintenance of myofibers, and thus appropriate muscle function. | 0.928 |
CKM | PYGB | ENSP00000221476 | ENSP00000216962 | Creatine kinase M-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | Glycogen phosphorylase, brain form; Glycogen phosphorylase that regulates glycogen mobilization. Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties. | 0.410 |
CKM | PYGM | ENSP00000221476 | ENSP00000164139 | Creatine kinase M-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | Glycogen phosphorylase, muscle form; Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties. | 0.571 |