| node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
| CFTR | SLC6A3 | ENSP00000003084 | ENSP00000270349 | Cystic fibrosis transmembrane conductance regulator; Epithelial ion channel that plays an important role in the regulation of epithelial ion and water transport and fluid homeostasis. Mediates the transport of chloride ions across the cell membrane. Channel activity is coupled to ATP hydrolysis. The ion channel is also permeable to HCO(3-); selectivity depends on the extracellular chloride concentration. Exerts its function also by modulating the activity of other ion channels and transporters. Plays an important role in airway fluid homeostasis. Contributes to the regulation of the pH [...] | Sodium-dependent dopamine transporter; Amine transporter. Terminates the action of dopamine by its high affinity sodium-dependent reuptake into presynaptic terminals. | 0.497 |
| CFTR | TAAR1 | ENSP00000003084 | ENSP00000275216 | Cystic fibrosis transmembrane conductance regulator; Epithelial ion channel that plays an important role in the regulation of epithelial ion and water transport and fluid homeostasis. Mediates the transport of chloride ions across the cell membrane. Channel activity is coupled to ATP hydrolysis. The ion channel is also permeable to HCO(3-); selectivity depends on the extracellular chloride concentration. Exerts its function also by modulating the activity of other ion channels and transporters. Plays an important role in airway fluid homeostasis. Contributes to the regulation of the pH [...] | Trace amine-associated receptor 1; Receptor for trace amines, including beta-phenylethylamine (b-PEA), p-tyramine (p-TYR), octopamine and tryptamine, with highest affinity for b-PEA and p-TYR. Unresponsive to classical biogenic amines, such as epinephrine and histamine and only partially activated by dopamine and serotonin. Trace amines are biogenic amines present in very low levels in mammalian tissues. Although some trace amines have clearly defined roles as neurotransmitters in invertebrates, the extent to which they function as true neurotransmitters in vertebrates has remained spe [...] | 0.458 |
| HTR1A | HTR1B | ENSP00000316244 | ENSP00000358963 | 5-hydroxytryptamine receptor 1A; G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for various drugs and psychoactive substances. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Beta-arrestin family members inhibit signaling via G proteins and mediate activation of alternative signaling pathways. Signaling inhibits adenylate cyclase activity and activates a phosphatidylinositol-calcium second [...] | 5-hydroxytryptamine receptor 1B; G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for ergot alkaloid derivatives, various anxiolytic and antidepressant drugs and other psychoactive substances, such as lysergic acid diethylamide (LSD). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase activity. Arrestin family members inhibit signaling via G proteins and medi [...] | 0.914 |
| HTR1A | SLC18A2 | ENSP00000316244 | ENSP00000496339 | 5-hydroxytryptamine receptor 1A; G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for various drugs and psychoactive substances. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Beta-arrestin family members inhibit signaling via G proteins and mediate activation of alternative signaling pathways. Signaling inhibits adenylate cyclase activity and activates a phosphatidylinositol-calcium second [...] | Synaptic vesicular amine transporter; Involved in the ATP-dependent vesicular transport of biogenic amine neurotransmitters. Pumps cytosolic monoamines including dopamine, norepinephrine, serotonin, and histamine into synaptic vesicles. Requisite for vesicular amine storage prior to secretion via exocytosis. | 0.616 |
| HTR1A | SLC6A2 | ENSP00000316244 | ENSP00000219833 | 5-hydroxytryptamine receptor 1A; G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for various drugs and psychoactive substances. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Beta-arrestin family members inhibit signaling via G proteins and mediate activation of alternative signaling pathways. Signaling inhibits adenylate cyclase activity and activates a phosphatidylinositol-calcium second [...] | Sodium-dependent noradrenaline transporter; Amine transporter. Terminates the action of noradrenaline by its high affinity sodium-dependent reuptake into presynaptic terminals. Belongs to the sodium:neurotransmitter symporter (SNF) (TC 2.A.22) family. SLC6A2 subfamily. | 0.788 |
| HTR1A | SLC6A3 | ENSP00000316244 | ENSP00000270349 | 5-hydroxytryptamine receptor 1A; G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for various drugs and psychoactive substances. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Beta-arrestin family members inhibit signaling via G proteins and mediate activation of alternative signaling pathways. Signaling inhibits adenylate cyclase activity and activates a phosphatidylinositol-calcium second [...] | Sodium-dependent dopamine transporter; Amine transporter. Terminates the action of dopamine by its high affinity sodium-dependent reuptake into presynaptic terminals. | 0.792 |
| HTR1B | HTR1A | ENSP00000358963 | ENSP00000316244 | 5-hydroxytryptamine receptor 1B; G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for ergot alkaloid derivatives, various anxiolytic and antidepressant drugs and other psychoactive substances, such as lysergic acid diethylamide (LSD). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase activity. Arrestin family members inhibit signaling via G proteins and medi [...] | 5-hydroxytryptamine receptor 1A; G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for various drugs and psychoactive substances. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Beta-arrestin family members inhibit signaling via G proteins and mediate activation of alternative signaling pathways. Signaling inhibits adenylate cyclase activity and activates a phosphatidylinositol-calcium second [...] | 0.914 |
| HTR1B | SLC18A2 | ENSP00000358963 | ENSP00000496339 | 5-hydroxytryptamine receptor 1B; G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for ergot alkaloid derivatives, various anxiolytic and antidepressant drugs and other psychoactive substances, such as lysergic acid diethylamide (LSD). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase activity. Arrestin family members inhibit signaling via G proteins and medi [...] | Synaptic vesicular amine transporter; Involved in the ATP-dependent vesicular transport of biogenic amine neurotransmitters. Pumps cytosolic monoamines including dopamine, norepinephrine, serotonin, and histamine into synaptic vesicles. Requisite for vesicular amine storage prior to secretion via exocytosis. | 0.548 |
| HTR1B | SLC6A2 | ENSP00000358963 | ENSP00000219833 | 5-hydroxytryptamine receptor 1B; G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for ergot alkaloid derivatives, various anxiolytic and antidepressant drugs and other psychoactive substances, such as lysergic acid diethylamide (LSD). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase activity. Arrestin family members inhibit signaling via G proteins and medi [...] | Sodium-dependent noradrenaline transporter; Amine transporter. Terminates the action of noradrenaline by its high affinity sodium-dependent reuptake into presynaptic terminals. Belongs to the sodium:neurotransmitter symporter (SNF) (TC 2.A.22) family. SLC6A2 subfamily. | 0.626 |
| HTR1B | SLC6A3 | ENSP00000358963 | ENSP00000270349 | 5-hydroxytryptamine receptor 1B; G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for ergot alkaloid derivatives, various anxiolytic and antidepressant drugs and other psychoactive substances, such as lysergic acid diethylamide (LSD). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase activity. Arrestin family members inhibit signaling via G proteins and medi [...] | Sodium-dependent dopamine transporter; Amine transporter. Terminates the action of dopamine by its high affinity sodium-dependent reuptake into presynaptic terminals. | 0.748 |
| RHO | TAAR1 | ENSP00000296271 | ENSP00000275216 | Rhodopsin; Photoreceptor required for image-forming vision at low light intensity. Required for photoreceptor cell viability after birth. Light- induced isomerization of the chromophore 11-cis-retinal to all-trans- retinal triggers a conformational change that activates signaling via G-proteins. Subsequent receptor phosphorylation mediates displacement of the bound G-protein alpha subunit by the arrestin SAG and terminates signaling. | Trace amine-associated receptor 1; Receptor for trace amines, including beta-phenylethylamine (b-PEA), p-tyramine (p-TYR), octopamine and tryptamine, with highest affinity for b-PEA and p-TYR. Unresponsive to classical biogenic amines, such as epinephrine and histamine and only partially activated by dopamine and serotonin. Trace amines are biogenic amines present in very low levels in mammalian tissues. Although some trace amines have clearly defined roles as neurotransmitters in invertebrates, the extent to which they function as true neurotransmitters in vertebrates has remained spe [...] | 0.527 |
| SLC18A2 | HTR1A | ENSP00000496339 | ENSP00000316244 | Synaptic vesicular amine transporter; Involved in the ATP-dependent vesicular transport of biogenic amine neurotransmitters. Pumps cytosolic monoamines including dopamine, norepinephrine, serotonin, and histamine into synaptic vesicles. Requisite for vesicular amine storage prior to secretion via exocytosis. | 5-hydroxytryptamine receptor 1A; G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for various drugs and psychoactive substances. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Beta-arrestin family members inhibit signaling via G proteins and mediate activation of alternative signaling pathways. Signaling inhibits adenylate cyclase activity and activates a phosphatidylinositol-calcium second [...] | 0.616 |
| SLC18A2 | HTR1B | ENSP00000496339 | ENSP00000358963 | Synaptic vesicular amine transporter; Involved in the ATP-dependent vesicular transport of biogenic amine neurotransmitters. Pumps cytosolic monoamines including dopamine, norepinephrine, serotonin, and histamine into synaptic vesicles. Requisite for vesicular amine storage prior to secretion via exocytosis. | 5-hydroxytryptamine receptor 1B; G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for ergot alkaloid derivatives, various anxiolytic and antidepressant drugs and other psychoactive substances, such as lysergic acid diethylamide (LSD). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase activity. Arrestin family members inhibit signaling via G proteins and medi [...] | 0.548 |
| SLC18A2 | SLC6A2 | ENSP00000496339 | ENSP00000219833 | Synaptic vesicular amine transporter; Involved in the ATP-dependent vesicular transport of biogenic amine neurotransmitters. Pumps cytosolic monoamines including dopamine, norepinephrine, serotonin, and histamine into synaptic vesicles. Requisite for vesicular amine storage prior to secretion via exocytosis. | Sodium-dependent noradrenaline transporter; Amine transporter. Terminates the action of noradrenaline by its high affinity sodium-dependent reuptake into presynaptic terminals. Belongs to the sodium:neurotransmitter symporter (SNF) (TC 2.A.22) family. SLC6A2 subfamily. | 0.815 |
| SLC18A2 | SLC6A3 | ENSP00000496339 | ENSP00000270349 | Synaptic vesicular amine transporter; Involved in the ATP-dependent vesicular transport of biogenic amine neurotransmitters. Pumps cytosolic monoamines including dopamine, norepinephrine, serotonin, and histamine into synaptic vesicles. Requisite for vesicular amine storage prior to secretion via exocytosis. | Sodium-dependent dopamine transporter; Amine transporter. Terminates the action of dopamine by its high affinity sodium-dependent reuptake into presynaptic terminals. | 0.966 |
| SLC18A2 | TAAR1 | ENSP00000496339 | ENSP00000275216 | Synaptic vesicular amine transporter; Involved in the ATP-dependent vesicular transport of biogenic amine neurotransmitters. Pumps cytosolic monoamines including dopamine, norepinephrine, serotonin, and histamine into synaptic vesicles. Requisite for vesicular amine storage prior to secretion via exocytosis. | Trace amine-associated receptor 1; Receptor for trace amines, including beta-phenylethylamine (b-PEA), p-tyramine (p-TYR), octopamine and tryptamine, with highest affinity for b-PEA and p-TYR. Unresponsive to classical biogenic amines, such as epinephrine and histamine and only partially activated by dopamine and serotonin. Trace amines are biogenic amines present in very low levels in mammalian tissues. Although some trace amines have clearly defined roles as neurotransmitters in invertebrates, the extent to which they function as true neurotransmitters in vertebrates has remained spe [...] | 0.604 |
| SLC6A2 | HTR1A | ENSP00000219833 | ENSP00000316244 | Sodium-dependent noradrenaline transporter; Amine transporter. Terminates the action of noradrenaline by its high affinity sodium-dependent reuptake into presynaptic terminals. Belongs to the sodium:neurotransmitter symporter (SNF) (TC 2.A.22) family. SLC6A2 subfamily. | 5-hydroxytryptamine receptor 1A; G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for various drugs and psychoactive substances. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Beta-arrestin family members inhibit signaling via G proteins and mediate activation of alternative signaling pathways. Signaling inhibits adenylate cyclase activity and activates a phosphatidylinositol-calcium second [...] | 0.788 |
| SLC6A2 | HTR1B | ENSP00000219833 | ENSP00000358963 | Sodium-dependent noradrenaline transporter; Amine transporter. Terminates the action of noradrenaline by its high affinity sodium-dependent reuptake into presynaptic terminals. Belongs to the sodium:neurotransmitter symporter (SNF) (TC 2.A.22) family. SLC6A2 subfamily. | 5-hydroxytryptamine receptor 1B; G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for ergot alkaloid derivatives, various anxiolytic and antidepressant drugs and other psychoactive substances, such as lysergic acid diethylamide (LSD). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors, such as adenylate cyclase. Signaling inhibits adenylate cyclase activity. Arrestin family members inhibit signaling via G proteins and medi [...] | 0.626 |
| SLC6A2 | SLC18A2 | ENSP00000219833 | ENSP00000496339 | Sodium-dependent noradrenaline transporter; Amine transporter. Terminates the action of noradrenaline by its high affinity sodium-dependent reuptake into presynaptic terminals. Belongs to the sodium:neurotransmitter symporter (SNF) (TC 2.A.22) family. SLC6A2 subfamily. | Synaptic vesicular amine transporter; Involved in the ATP-dependent vesicular transport of biogenic amine neurotransmitters. Pumps cytosolic monoamines including dopamine, norepinephrine, serotonin, and histamine into synaptic vesicles. Requisite for vesicular amine storage prior to secretion via exocytosis. | 0.815 |
| SLC6A2 | TAAR1 | ENSP00000219833 | ENSP00000275216 | Sodium-dependent noradrenaline transporter; Amine transporter. Terminates the action of noradrenaline by its high affinity sodium-dependent reuptake into presynaptic terminals. Belongs to the sodium:neurotransmitter symporter (SNF) (TC 2.A.22) family. SLC6A2 subfamily. | Trace amine-associated receptor 1; Receptor for trace amines, including beta-phenylethylamine (b-PEA), p-tyramine (p-TYR), octopamine and tryptamine, with highest affinity for b-PEA and p-TYR. Unresponsive to classical biogenic amines, such as epinephrine and histamine and only partially activated by dopamine and serotonin. Trace amines are biogenic amines present in very low levels in mammalian tissues. Although some trace amines have clearly defined roles as neurotransmitters in invertebrates, the extent to which they function as true neurotransmitters in vertebrates has remained spe [...] | 0.450 |