node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ACACA | ACLY | ENSP00000483300 | ENSP00000466259 | Acetyl-CoA carboxylase 1; Cytosolic enzyme that catalyzes the carboxylation of acetyl- CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis. This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA. | ATP-citrate synthase; Catalyzes the cleavage of citrate into oxaloacetate and acetyl-CoA, the latter serving as common substrate for de novo cholesterol and fatty acid synthesis. In the N-terminal section; belongs to the succinate/malate CoA ligase beta subunit family. | 0.986 |
ACACA | INS | ENSP00000483300 | ENSP00000380432 | Acetyl-CoA carboxylase 1; Cytosolic enzyme that catalyzes the carboxylation of acetyl- CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis. This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA. | Insulin A chain; Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. | 0.629 |
ACACA | MLXIPL | ENSP00000483300 | ENSP00000320886 | Acetyl-CoA carboxylase 1; Cytosolic enzyme that catalyzes the carboxylation of acetyl- CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis. This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA. | Carbohydrate-responsive element-binding protein; Transcriptional repressor. Binds to the canonical and non- canonical E box sequences 5'-CACGTG-3' (By similarity). | 0.748 |
ACACA | PPARG | ENSP00000483300 | ENSP00000287820 | Acetyl-CoA carboxylase 1; Cytosolic enzyme that catalyzes the carboxylation of acetyl- CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis. This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA. | Peroxisome proliferator-activated receptor gamma; Nuclear receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the nuclear receptor binds to DNA specific PPAR response elements (PPRE) and modulates the transcription of its target genes, such as acyl-CoA oxidase. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. ARF6 acts as a key regulator of the tissue-specific adipocyte P2 (aP2) enhancer. Acts as a critical regulator of gut ho [...] | 0.703 |
ACACA | SCD | ENSP00000483300 | ENSP00000359380 | Acetyl-CoA carboxylase 1; Cytosolic enzyme that catalyzes the carboxylation of acetyl- CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis. This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA. | Acyl-CoA desaturase; Stearyl-CoA desaturase that utilizes O(2) and electrons from reduced cytochrome b5 to introduce the first double bond into saturated fatty acyl-CoA substrates. Catalyzes the insertion of a cis double bond at the delta-9 position into fatty acyl-CoA substrates including palmitoyl-CoA and stearoyl-CoA. Gives rise to a mixture of 16:1 and 18:1 unsaturated fatty acids. Plays an important role in lipid biosynthesis. Plays an important role in regulating the expression of genes that are involved in lipogenesis and in regulating mitochondrial fatty acid oxidation (By simi [...] | 0.937 |
ACACA | SREBF1 | ENSP00000483300 | ENSP00000348069 | Acetyl-CoA carboxylase 1; Cytosolic enzyme that catalyzes the carboxylation of acetyl- CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis. This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA. | Processed sterol regulatory element-binding protein 1; Transcriptional activator required for lipid homeostasis. Regulates transcription of the LDL receptor gene as well as the fatty acid and to a lesser degree the cholesterol synthesis pathway (By similarity). Binds to the sterol regulatory element 1 (SRE-1) (5'- ATCACCCCAC-3'). Has dual sequence specificity binding to both an E-box motif (5'-ATCACGTGA-3') and to SRE-1 (5'-ATCACCCCAC-3'). | 0.981 |
ACACA | SREBF2 | ENSP00000483300 | ENSP00000354476 | Acetyl-CoA carboxylase 1; Cytosolic enzyme that catalyzes the carboxylation of acetyl- CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis. This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA. | Processed sterol regulatory element-binding protein 2; Transcriptional activator required for lipid homeostasis. Regulates transcription of the LDL receptor gene as well as the cholesterol and to a lesser degree the fatty acid synthesis pathway (By similarity). Binds the sterol regulatory element 1 (SRE-1) (5'- ATCACCCCAC-3') found in the flanking region of the LDRL and HMG-CoA synthase genes. | 0.724 |
ACACA | XPR1 | ENSP00000483300 | ENSP00000356562 | Acetyl-CoA carboxylase 1; Cytosolic enzyme that catalyzes the carboxylation of acetyl- CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis. This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA. | Xenotropic and polytropic retrovirus receptor 1; Plays a role in phosphate homeostasis. Mediates phosphate export from the cell. Binds inositol hexakisphosphate (Ins6P) and similar inositol polyphosphates, such as 5-diphospho-inositol pentakisphosphate (5-InsP7); these are important intracellular signaling molecules. | 0.464 |
ACLY | ACACA | ENSP00000466259 | ENSP00000483300 | ATP-citrate synthase; Catalyzes the cleavage of citrate into oxaloacetate and acetyl-CoA, the latter serving as common substrate for de novo cholesterol and fatty acid synthesis. In the N-terminal section; belongs to the succinate/malate CoA ligase beta subunit family. | Acetyl-CoA carboxylase 1; Cytosolic enzyme that catalyzes the carboxylation of acetyl- CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis. This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA. | 0.986 |
ACLY | INS | ENSP00000466259 | ENSP00000380432 | ATP-citrate synthase; Catalyzes the cleavage of citrate into oxaloacetate and acetyl-CoA, the latter serving as common substrate for de novo cholesterol and fatty acid synthesis. In the N-terminal section; belongs to the succinate/malate CoA ligase beta subunit family. | Insulin A chain; Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. | 0.600 |
ACLY | MLXIPL | ENSP00000466259 | ENSP00000320886 | ATP-citrate synthase; Catalyzes the cleavage of citrate into oxaloacetate and acetyl-CoA, the latter serving as common substrate for de novo cholesterol and fatty acid synthesis. In the N-terminal section; belongs to the succinate/malate CoA ligase beta subunit family. | Carbohydrate-responsive element-binding protein; Transcriptional repressor. Binds to the canonical and non- canonical E box sequences 5'-CACGTG-3' (By similarity). | 0.911 |
ACLY | PPARG | ENSP00000466259 | ENSP00000287820 | ATP-citrate synthase; Catalyzes the cleavage of citrate into oxaloacetate and acetyl-CoA, the latter serving as common substrate for de novo cholesterol and fatty acid synthesis. In the N-terminal section; belongs to the succinate/malate CoA ligase beta subunit family. | Peroxisome proliferator-activated receptor gamma; Nuclear receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the nuclear receptor binds to DNA specific PPAR response elements (PPRE) and modulates the transcription of its target genes, such as acyl-CoA oxidase. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. ARF6 acts as a key regulator of the tissue-specific adipocyte P2 (aP2) enhancer. Acts as a critical regulator of gut ho [...] | 0.563 |
ACLY | SCD | ENSP00000466259 | ENSP00000359380 | ATP-citrate synthase; Catalyzes the cleavage of citrate into oxaloacetate and acetyl-CoA, the latter serving as common substrate for de novo cholesterol and fatty acid synthesis. In the N-terminal section; belongs to the succinate/malate CoA ligase beta subunit family. | Acyl-CoA desaturase; Stearyl-CoA desaturase that utilizes O(2) and electrons from reduced cytochrome b5 to introduce the first double bond into saturated fatty acyl-CoA substrates. Catalyzes the insertion of a cis double bond at the delta-9 position into fatty acyl-CoA substrates including palmitoyl-CoA and stearoyl-CoA. Gives rise to a mixture of 16:1 and 18:1 unsaturated fatty acids. Plays an important role in lipid biosynthesis. Plays an important role in regulating the expression of genes that are involved in lipogenesis and in regulating mitochondrial fatty acid oxidation (By simi [...] | 0.812 |
ACLY | SREBF1 | ENSP00000466259 | ENSP00000348069 | ATP-citrate synthase; Catalyzes the cleavage of citrate into oxaloacetate and acetyl-CoA, the latter serving as common substrate for de novo cholesterol and fatty acid synthesis. In the N-terminal section; belongs to the succinate/malate CoA ligase beta subunit family. | Processed sterol regulatory element-binding protein 1; Transcriptional activator required for lipid homeostasis. Regulates transcription of the LDL receptor gene as well as the fatty acid and to a lesser degree the cholesterol synthesis pathway (By similarity). Binds to the sterol regulatory element 1 (SRE-1) (5'- ATCACCCCAC-3'). Has dual sequence specificity binding to both an E-box motif (5'-ATCACGTGA-3') and to SRE-1 (5'-ATCACCCCAC-3'). | 0.795 |
ACLY | SREBF2 | ENSP00000466259 | ENSP00000354476 | ATP-citrate synthase; Catalyzes the cleavage of citrate into oxaloacetate and acetyl-CoA, the latter serving as common substrate for de novo cholesterol and fatty acid synthesis. In the N-terminal section; belongs to the succinate/malate CoA ligase beta subunit family. | Processed sterol regulatory element-binding protein 2; Transcriptional activator required for lipid homeostasis. Regulates transcription of the LDL receptor gene as well as the cholesterol and to a lesser degree the fatty acid synthesis pathway (By similarity). Binds the sterol regulatory element 1 (SRE-1) (5'- ATCACCCCAC-3') found in the flanking region of the LDRL and HMG-CoA synthase genes. | 0.657 |
ACLY | XPR1 | ENSP00000466259 | ENSP00000356562 | ATP-citrate synthase; Catalyzes the cleavage of citrate into oxaloacetate and acetyl-CoA, the latter serving as common substrate for de novo cholesterol and fatty acid synthesis. In the N-terminal section; belongs to the succinate/malate CoA ligase beta subunit family. | Xenotropic and polytropic retrovirus receptor 1; Plays a role in phosphate homeostasis. Mediates phosphate export from the cell. Binds inositol hexakisphosphate (Ins6P) and similar inositol polyphosphates, such as 5-diphospho-inositol pentakisphosphate (5-InsP7); these are important intracellular signaling molecules. | 0.404 |
GCG | INS | ENSP00000387662 | ENSP00000380432 | Glicentin-related polypeptide; Glucagon plays a key role in glucose metabolism and homeostasis. Regulates blood glucose by increasing gluconeogenesis and decreasing glycolysis. A counterregulatory hormone of insulin, raises plasma glucose levels in response to insulin-induced hypoglycemia. Plays an important role in initiating and maintaining hyperglycemic conditions in diabetes. GLP-2 stimulates intestinal growth and up-regulates villus height in the small intestine, concomitant with increased crypt cell proliferation and decreased enterocyte apoptosis. The gastrointestinal tract, fro [...] | Insulin A chain; Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. | 0.998 |
GCG | MLXIPL | ENSP00000387662 | ENSP00000320886 | Glicentin-related polypeptide; Glucagon plays a key role in glucose metabolism and homeostasis. Regulates blood glucose by increasing gluconeogenesis and decreasing glycolysis. A counterregulatory hormone of insulin, raises plasma glucose levels in response to insulin-induced hypoglycemia. Plays an important role in initiating and maintaining hyperglycemic conditions in diabetes. GLP-2 stimulates intestinal growth and up-regulates villus height in the small intestine, concomitant with increased crypt cell proliferation and decreased enterocyte apoptosis. The gastrointestinal tract, fro [...] | Carbohydrate-responsive element-binding protein; Transcriptional repressor. Binds to the canonical and non- canonical E box sequences 5'-CACGTG-3' (By similarity). | 0.571 |
GCG | PPARG | ENSP00000387662 | ENSP00000287820 | Glicentin-related polypeptide; Glucagon plays a key role in glucose metabolism and homeostasis. Regulates blood glucose by increasing gluconeogenesis and decreasing glycolysis. A counterregulatory hormone of insulin, raises plasma glucose levels in response to insulin-induced hypoglycemia. Plays an important role in initiating and maintaining hyperglycemic conditions in diabetes. GLP-2 stimulates intestinal growth and up-regulates villus height in the small intestine, concomitant with increased crypt cell proliferation and decreased enterocyte apoptosis. The gastrointestinal tract, fro [...] | Peroxisome proliferator-activated receptor gamma; Nuclear receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the nuclear receptor binds to DNA specific PPAR response elements (PPRE) and modulates the transcription of its target genes, such as acyl-CoA oxidase. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. ARF6 acts as a key regulator of the tissue-specific adipocyte P2 (aP2) enhancer. Acts as a critical regulator of gut ho [...] | 0.687 |
GCG | SREBF1 | ENSP00000387662 | ENSP00000348069 | Glicentin-related polypeptide; Glucagon plays a key role in glucose metabolism and homeostasis. Regulates blood glucose by increasing gluconeogenesis and decreasing glycolysis. A counterregulatory hormone of insulin, raises plasma glucose levels in response to insulin-induced hypoglycemia. Plays an important role in initiating and maintaining hyperglycemic conditions in diabetes. GLP-2 stimulates intestinal growth and up-regulates villus height in the small intestine, concomitant with increased crypt cell proliferation and decreased enterocyte apoptosis. The gastrointestinal tract, fro [...] | Processed sterol regulatory element-binding protein 1; Transcriptional activator required for lipid homeostasis. Regulates transcription of the LDL receptor gene as well as the fatty acid and to a lesser degree the cholesterol synthesis pathway (By similarity). Binds to the sterol regulatory element 1 (SRE-1) (5'- ATCACCCCAC-3'). Has dual sequence specificity binding to both an E-box motif (5'-ATCACGTGA-3') and to SRE-1 (5'-ATCACCCCAC-3'). | 0.599 |