node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
CKB | CKM | ENSP00000299198 | ENSP00000221476 | Creatine kinase B-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | Creatine kinase M-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | 0.996 |
CKM | CKB | ENSP00000221476 | ENSP00000299198 | Creatine kinase M-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | Creatine kinase B-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | 0.996 |
CKM | CKMT1B | ENSP00000221476 | ENSP00000300283 | Creatine kinase M-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | Creatine kinase U-type, mitochondrial; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | 0.611 |
CKM | CKMT2 | ENSP00000221476 | ENSP00000404203 | Creatine kinase M-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | Creatine kinase S-type, mitochondrial; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa; Belongs to the ATP:guanido phosphotransferase family. | 0.866 |
CKMT1B | CKM | ENSP00000300283 | ENSP00000221476 | Creatine kinase U-type, mitochondrial; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | Creatine kinase M-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | 0.611 |
CKMT1B | CKMT2 | ENSP00000300283 | ENSP00000404203 | Creatine kinase U-type, mitochondrial; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | Creatine kinase S-type, mitochondrial; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa; Belongs to the ATP:guanido phosphotransferase family. | 0.864 |
CKMT2 | CKM | ENSP00000404203 | ENSP00000221476 | Creatine kinase S-type, mitochondrial; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa; Belongs to the ATP:guanido phosphotransferase family. | Creatine kinase M-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | 0.866 |
CKMT2 | CKMT1B | ENSP00000404203 | ENSP00000300283 | Creatine kinase S-type, mitochondrial; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa; Belongs to the ATP:guanido phosphotransferase family. | Creatine kinase U-type, mitochondrial; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. | 0.864 |
GCH1 | PAH | ENSP00000477796 | ENSP00000448059 | GTP cyclohydrolase 1; Positively regulates nitric oxide synthesis in umbilical vein endothelial cells (HUVECs). May be involved in dopamine synthesis. May modify pain sensitivity and persistence. Isoform GCH-1 is the functional enzyme, the potential function of the enzymatically inactive isoforms remains unknown. Belongs to the GTP cyclohydrolase I family. | Phenylalanine-4-hydroxylase; Catalyzes the hydroxylation of L-phenylalanine to L-tyrosine. Belongs to the biopterin-dependent aromatic amino acid hydroxylase family. | 0.719 |
GCH1 | SPR | ENSP00000477796 | ENSP00000234454 | GTP cyclohydrolase 1; Positively regulates nitric oxide synthesis in umbilical vein endothelial cells (HUVECs). May be involved in dopamine synthesis. May modify pain sensitivity and persistence. Isoform GCH-1 is the functional enzyme, the potential function of the enzymatically inactive isoforms remains unknown. Belongs to the GTP cyclohydrolase I family. | Sepiapterin reductase; Catalyzes the final one or two reductions in tetra- hydrobiopterin biosynthesis to form 5,6,7,8-tetrahydrobiopterin; Belongs to the sepiapterin reductase family. | 0.869 |
GCH1 | TH | ENSP00000477796 | ENSP00000370571 | GTP cyclohydrolase 1; Positively regulates nitric oxide synthesis in umbilical vein endothelial cells (HUVECs). May be involved in dopamine synthesis. May modify pain sensitivity and persistence. Isoform GCH-1 is the functional enzyme, the potential function of the enzymatically inactive isoforms remains unknown. Belongs to the GTP cyclohydrolase I family. | Tyrosine 3-monooxygenase; Plays an important role in the physiology of adrenergic neurons. | 0.935 |
PAH | GCH1 | ENSP00000448059 | ENSP00000477796 | Phenylalanine-4-hydroxylase; Catalyzes the hydroxylation of L-phenylalanine to L-tyrosine. Belongs to the biopterin-dependent aromatic amino acid hydroxylase family. | GTP cyclohydrolase 1; Positively regulates nitric oxide synthesis in umbilical vein endothelial cells (HUVECs). May be involved in dopamine synthesis. May modify pain sensitivity and persistence. Isoform GCH-1 is the functional enzyme, the potential function of the enzymatically inactive isoforms remains unknown. Belongs to the GTP cyclohydrolase I family. | 0.719 |
PAH | SPR | ENSP00000448059 | ENSP00000234454 | Phenylalanine-4-hydroxylase; Catalyzes the hydroxylation of L-phenylalanine to L-tyrosine. Belongs to the biopterin-dependent aromatic amino acid hydroxylase family. | Sepiapterin reductase; Catalyzes the final one or two reductions in tetra- hydrobiopterin biosynthesis to form 5,6,7,8-tetrahydrobiopterin; Belongs to the sepiapterin reductase family. | 0.981 |
PAH | TH | ENSP00000448059 | ENSP00000370571 | Phenylalanine-4-hydroxylase; Catalyzes the hydroxylation of L-phenylalanine to L-tyrosine. Belongs to the biopterin-dependent aromatic amino acid hydroxylase family. | Tyrosine 3-monooxygenase; Plays an important role in the physiology of adrenergic neurons. | 0.826 |
SPR | GCH1 | ENSP00000234454 | ENSP00000477796 | Sepiapterin reductase; Catalyzes the final one or two reductions in tetra- hydrobiopterin biosynthesis to form 5,6,7,8-tetrahydrobiopterin; Belongs to the sepiapterin reductase family. | GTP cyclohydrolase 1; Positively regulates nitric oxide synthesis in umbilical vein endothelial cells (HUVECs). May be involved in dopamine synthesis. May modify pain sensitivity and persistence. Isoform GCH-1 is the functional enzyme, the potential function of the enzymatically inactive isoforms remains unknown. Belongs to the GTP cyclohydrolase I family. | 0.869 |
SPR | PAH | ENSP00000234454 | ENSP00000448059 | Sepiapterin reductase; Catalyzes the final one or two reductions in tetra- hydrobiopterin biosynthesis to form 5,6,7,8-tetrahydrobiopterin; Belongs to the sepiapterin reductase family. | Phenylalanine-4-hydroxylase; Catalyzes the hydroxylation of L-phenylalanine to L-tyrosine. Belongs to the biopterin-dependent aromatic amino acid hydroxylase family. | 0.981 |
SPR | TH | ENSP00000234454 | ENSP00000370571 | Sepiapterin reductase; Catalyzes the final one or two reductions in tetra- hydrobiopterin biosynthesis to form 5,6,7,8-tetrahydrobiopterin; Belongs to the sepiapterin reductase family. | Tyrosine 3-monooxygenase; Plays an important role in the physiology of adrenergic neurons. | 0.969 |
TH | GCH1 | ENSP00000370571 | ENSP00000477796 | Tyrosine 3-monooxygenase; Plays an important role in the physiology of adrenergic neurons. | GTP cyclohydrolase 1; Positively regulates nitric oxide synthesis in umbilical vein endothelial cells (HUVECs). May be involved in dopamine synthesis. May modify pain sensitivity and persistence. Isoform GCH-1 is the functional enzyme, the potential function of the enzymatically inactive isoforms remains unknown. Belongs to the GTP cyclohydrolase I family. | 0.935 |
TH | PAH | ENSP00000370571 | ENSP00000448059 | Tyrosine 3-monooxygenase; Plays an important role in the physiology of adrenergic neurons. | Phenylalanine-4-hydroxylase; Catalyzes the hydroxylation of L-phenylalanine to L-tyrosine. Belongs to the biopterin-dependent aromatic amino acid hydroxylase family. | 0.826 |
TH | SPR | ENSP00000370571 | ENSP00000234454 | Tyrosine 3-monooxygenase; Plays an important role in the physiology of adrenergic neurons. | Sepiapterin reductase; Catalyzes the final one or two reductions in tetra- hydrobiopterin biosynthesis to form 5,6,7,8-tetrahydrobiopterin; Belongs to the sepiapterin reductase family. | 0.969 |