Your Input: | |||||
NDUFS7 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (213 aa) | ||||
ATP5F1E | ATP synthase subunit epsilon, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of th [...] (51 aa) | ||||
MTERF1 | Transcription termination factor 1, mitochondrial; Transcription termination factor. Binds to a 28 bp region within the tRNA(Leu(uur)) gene at a position immediately adjacent to and downstream of the 16S rRNA gene; this region comprises a tridecamer sequence critical for directing accurate termination. Binds DNA along the major grove and promotes DNA bending and partial unwinding. Promotes base flipping. Transcription termination activity appears to be polarized with highest specificity for transcripts initiated on the light strand; Belongs to the mTERF family. (399 aa) | ||||
NDUFA2 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (99 aa) | ||||
NDUFA10 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (355 aa) | ||||
NDUFAF1 | Complex I intermediate-associated protein 30, mitochondrial; Chaperone protein involved in early stages of the assembly of mitochondrial NADH:ubiquinone oxidoreductase complex (complex I). (327 aa) | ||||
COX10 | Protoheme IX farnesyltransferase, mitochondrial; Converts protoheme IX and farnesyl diphosphate to heme O. Belongs to the UbiA prenyltransferase family. (443 aa) | ||||
TTC19 | Tetratricopeptide repeat protein 19, mitochondrial; Required for the preservation of the structural and functional integrity of mitochondrial respiratory complex III by allowing the physiological turnover of the Rieske protein UQCRFS1. Involved in the clearance of UQCRFS1 N-terminal fragments, which are produced upon incorporation of UQCRFS1 into the complex III and whose presence is detrimental for its catalytic activity. (380 aa) | ||||
NDUFS3 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (264 aa) | ||||
DGUOK | Deoxyguanosine kinase, mitochondrial; Phosphorylates deoxyguanosine and deoxyadenosine in the mitochondrial matrix, with the highest efficiency for deoxyguanosine. In non-replicating cells, where cytosolic dNTP synthesis is down- regulated, mtDNA synthesis depends solely on DGUOK and TK2. Phosphorylates certain nucleoside analogs. Widely used as target of antiviral and chemotherapeutic agents. (277 aa) | ||||
GFM1 | Elongation factor G, mitochondrial; Mitochondrial GTPase that catalyzes the GTP-dependent ribosomal translocation step during translation elongation. During this step, the ribosome changes from the pre-translocational (PRE) to the post-translocational (POST) state as the newly formed A-site-bound peptidyl-tRNA and P-site-bound deacylated tRNA move to the P and E sites, respectively. Catalyzes the coordinated movement of the two tRNA molecules, the mRNA and conformational changes in the ribosome. Does not mediate the disassembly of ribosomes from messenger RNA at the termination of mito [...] (770 aa) | ||||
NDUFS6 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (124 aa) | ||||
NDUFAF2 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 2; Acts as a molecular chaperone for mitochondrial complex I assembly. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (169 aa) | ||||
NDUFS4 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (175 aa) | ||||
TK2 | Thymidine kinase 2, mitochondrial; Phosphorylates thymidine, deoxycytidine, and deoxyuridine in the mitochondrial matrix. In non-replicating cells, where cytosolic dNTP synthesis is down-regulated, mtDNA synthesis depends solely on TK2 and DGUOK. Widely used as target of antiviral and chemotherapeutic agents; Belongs to the DCK/DGK family. (265 aa) | ||||
HSPA4 | Heat shock protein family A member 4; Belongs to the heat shock protein 70 family. (840 aa) | ||||
CYCS | Cytochrome c; Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain. (105 aa) | ||||
TWNK | Twinkle protein, mitochondrial; Involved in mitochondrial DNA (mtDNA) metabolism. Could function as an adenine nucleotide-dependent DNA helicase. Function inferred to be critical for lifetime maintenance of mtDNA integrity. In vitro, forms in combination with POLG, a processive replication machinery, which can use double-stranded DNA (dsDNA) as template to synthesize single-stranded DNA (ssDNA) molecules. May be a key regulator of mtDNA copy number in mammals. (684 aa) | ||||
ACAD9 | Complex I assembly factor ACAD9, mitochondrial; As part of the MCIA complex, primarily participates to the assembly of the mitochondrial complex I and therefore plays a role in oxidative phosphorylation. This moonlighting protein has also a dehydrogenase activity toward a broad range of substrates with greater specificity for long-chain unsaturated acyl-CoAs. However, in vivo, it does not seem to play a primary role in fatty acid oxidation. In addition, the function in complex I assembly is independent of the dehydrogenase activity of the protein. (621 aa) | ||||
NDUFS8 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). May donate electrons to ubiquinone. (210 aa) | ||||
TOP3A | DNA topoisomerase 3-alpha; Releases the supercoiling and torsional tension of DNA introduced during the DNA replication and transcription by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA-(5'-phosphotyrosyl)- enzyme intermediate and the expulsion of a 3'-OH DNA strand. The free DNA strand then undergoes passage around the unbroken strand thus removing DNA supercoils [...] (1001 aa) | ||||
COX14 | Cytochrome c oxidase assembly protein COX14; Core component of the MITRAC (mitochondrial translation regulation assembly intermediate of cytochrome c oxidase complex) complex, that regulates cytochrome c oxidase assembly. Requires for coordination of the early steps of cytochrome c oxidase assembly with the synthesis of MT-CO1. (57 aa) | ||||
NDUFV2 | NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (249 aa) | ||||
TOP1MT | DNA topoisomerase I, mitochondrial; Releases the supercoiling and torsional tension of DNA introduced during duplication of mitochondrial DNA by transiently cleaving and rejoining one strand of the DNA duplex. Introduces a single-strand break via transesterification at a target site in duplex DNA. The scissile phosphodiester is attacked by the catalytic tyrosine of the enzyme, resulting in the formation of a DNA-(3'-phosphotyrosyl)- enzyme intermediate and the expulsion of a 5'-OH DNA strand. The free DNA strand then rotates around the intact phosphodiester bond on the opposing strand, [...] (601 aa) | ||||
COA5 | Cytochrome c oxidase assembly factor 5; Involved in an early step of the mitochondrial complex IV assembly process. (74 aa) | ||||
HSP90AA1 | Heat shock protein HSP 90-alpha; Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. Engages with a ra [...] (854 aa) | ||||
MT-CYB | Cytochrome b; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex) that is part of the mitochondrial respiratory chain. The b-c1 complex mediates electron transfer from ubiquinol to cytochrome c. Contributes to the generation of a proton gradient across the mitochondrial membrane that is then used for ATP synthesis. (380 aa) | ||||
MT-ATP6 | ATP synthase subunit a; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subuni [...] (226 aa) | ||||
MT-ND1 | NADH-ubiquinone oxidoreductase chain 1; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (318 aa) | ||||
MT-ND5 | NADH-ubiquinone oxidoreductase chain 5; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (603 aa) | ||||
MT-ATP8 | ATP synthase protein 8; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subuni [...] (68 aa) | ||||
TFB2M | Dimethyladenosine transferase 2, mitochondrial; S-adenosyl-L-methionine-dependent rRNA methyltransferase which may methylate two specific adjacent adenosines in the loop of a conserved hairpin near the 3'-end of 12S mitochondrial rRNA (Probable). Component of the mitochondrial transcription initiation complex, composed at least of TFB2M, TFAM and POLRMT that is required for basal transcription of mitochondrial DNA. In this complex, TFAM recruits POLRMT to a specific promoter whereas TFB2M induces structural changes in POLRMT to enable promoter opening and trapping of the DNA non- templ [...] (396 aa) | ||||
TFB1M | Dimethyladenosine transferase 1, mitochondrial; S-adenosyl-L-methionine-dependent methyltransferase which specifically dimethylates mitochondrial 12S rRNA at the conserved stem loop. Also required for basal transcription of mitochondrial DNA, probably via its interaction with POLRMT and TFAM. Stimulates transcription independently of the methyltransferase activity. (346 aa) | ||||
MTRF1L | Peptide chain release factor 1-like, mitochondrial; Mitochondrial peptide chain release factor that directs the termination of translation in response to the peptide chain termination codons UAA and UAG. (380 aa) | ||||
NDUFS2 | NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (463 aa) | ||||
NDUFAF4 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex assembly factor 4; Involved in the assembly of mitochondrial NADH:ubiquinone oxidoreductase complex (complex I). May be involved in cell proliferation and survival of hormone-dependent tumor cells. May be a regulator of breast tumor cell invasion. (175 aa) | ||||
NDUFA1 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (70 aa) | ||||
HSP90AB1 | Heat shock protein HSP 90-beta; Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co- chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. Engages with a range of client protein classes via its interact [...] (724 aa) | ||||
SURF1 | Surfeit locus protein 1; Component of the MITRAC (mitochondrial translation regulation assembly intermediate of cytochrome c oxidase complex) complex, that regulates cytochrome c oxidase assembly. (300 aa) | ||||
DNM1 | Dynamin-1; Microtubule-associated force-producing protein involved in producing microtubule bundles and able to bind and hydrolyze GTP. Most probably involved in vesicular trafficking processes. Involved in receptor-mediated endocytosis. (864 aa) | ||||
MRPS16 | Mitochondrial ribosomal protein S16; Belongs to the bacterial ribosomal protein bS16 family. (137 aa) | ||||
COX4I2 | Cytochrome c oxidase subunit 4 isoform 2, mitochondrial; Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol- cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives tran [...] (171 aa) | ||||
PUS1 | tRNA pseudouridine synthase A; Converts specific uridines to PSI in a number of tRNA substrates. Acts on positions 27/28 in the anticodon stem and also positions 34 and 36 in the anticodon of an intron containing tRNA. Involved in regulation of nuclear receptor activity through pseudouridylation of SRA1 RNA; Belongs to the tRNA pseudouridine synthase TruA family. (427 aa) | ||||
SP2 | Transcription factor Sp2; Binds to GC box promoters elements and selectively activates mRNA synthesis from genes that contain functional recognition sites. (613 aa) | ||||
NDUFAF5 | Arginine-hydroxylase NDUFAF5, mitochondrial; Arginine hydroxylase involved in the assembly of mitochondrial NADH:ubiquinone oxidoreductase complex (complex I, MT- ND1) at early stages. Acts by mediating hydroxylation of 'Arg-111' of NDUFS7. May also have methyltransferase activity (Probable). (345 aa) | ||||
MPV17 | Protein Mpv17; Non-selective channel that modulates the membrane potential under normal conditions and oxidative stress, and is involved in mitochondrial homeostasis. Involved in mitochondrial deoxynucleoside triphosphates (dNTP) pool homeostasis and mitochondrial DNA (mtDNA) maintenance. May be involved in the regulation of reactive oxygen species metabolism and the control of oxidative phosphorylation (By similarity). (176 aa) | ||||
MTIF3 | Translation initiation factor IF-3, mitochondrial; IF-3 binds to the 28S ribosomal subunit and shifts the equilibrum between 55S ribosomes and their 39S and 28S subunits in favor of the free subunits, thus enhancing the availability of 28S subunits on which protein synthesis initiation begins. (278 aa) | ||||
TYMP | Thymidine phosphorylase; May have a role in maintaining the integrity of the blood vessels. Has growth promoting activity on endothelial cells, angiogenic activity in vivo and chemotactic activity on endothelial cells in vitro. (487 aa) | ||||
CFAP410 | Cilia and flagella associated protein 410. (375 aa) | ||||
FASTKD2 | FAST kinase domain-containing protein 2, mitochondrial; Plays an important role in assembly of the mitochondrial large ribosomal subunit. As a component of a functional protein-RNA module, consisting of RCC1L, NGRN, RPUSD3, RPUSD4, TRUB2, FASTKD2 and 16S mitochondrial ribosomal RNA (16S mt- rRNA), controls 16S mt-rRNA abundance and is required for intra- mitochondrial translation. (710 aa) | ||||
NDUFA11 | NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 11; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (228 aa) | ||||
NDUFS1 | NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). This is the largest subunit of complex I and it is a component of the iron-sulfur (IP) fragment of the enzyme. It may form part of the active site crevice where NADH is oxidized. (741 aa) | ||||
POLG | DNA polymerase subunit gamma-1; Involved in the replication of mitochondrial DNA. Associates with mitochondrial DNA; Belongs to the DNA polymerase type-A family. (1239 aa) | ||||
NDUFB3 | NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 3; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (98 aa) | ||||
BCS1L | Mitochondrial chaperone BCS1; Chaperone necessary for the assembly of mitochondrial respiratory chain complex III. Plays an important role in the maintenance of mitochondrial tubular networks, respiratory chain assembly and formation of the LETM1 complex. (419 aa) | ||||
MFN2 | Mitofusin-2; Mitochondrial outer membrane GTPase that mediates mitochondrial clustering and fusion. Mitochondria are highly dynamic organelles, and their morphology is determined by the equilibrium between mitochondrial fusion and fission events. Overexpression induces the formation of mitochondrial networks. Membrane clustering requires GTPase activity and may involve a major rearrangement of the coiled coil domains (Probable). Plays a central role in mitochondrial metabolism and may be associated with obesity and/or apoptosis processes (By similarity). Plays an important role in the [...] (757 aa) | ||||
ATPAF2 | ATP synthase mitochondrial F1 complex assembly factor 2; May play a role in the assembly of the F1 component of the mitochondrial ATP synthase (ATPase); Belongs to the ATP12 family. (289 aa) | ||||
MRPS22 | Mitochondrial ribosomal protein S22. (360 aa) | ||||
SSBP1 | Single-stranded DNA-binding protein, mitochondrial; Binds preferentially and cooperatively to pyrimidine rich single-stranded DNA (ss-DNA). In vitro, required to maintain the copy number of mitochondrial DNA (mtDNA) and plays crucial roles during mtDNA replication that stimulate activity of the replisome components POLG and TWNK at the replication fork. Promotes the activity of the gamma complex polymerase POLG, largely by organizing the template DNA and eliminating secondary structures to favor ss-DNA conformations that facilitate POLG activity. In addition it is able to promote the 5 [...] (148 aa) | ||||
TFAM | Transcription factor A, mitochondrial; Binds to the mitochondrial light strand promoter and functions in mitochondrial transcription regulation. Component of the mitochondrial transcription initiation complex, composed at least of TFB2M, TFAM and POLRMT that is required for basal transcription of mitochondrial DNA. In this complex, TFAM recruits POLRMT to a specific promoter whereas TFB2M induces structural changes in POLRMT to enable promoter opening and trapping of the DNA non-template strand. Required for accurate and efficient promoter recognition by the mitochondrial RNA polymeras [...] (246 aa) | ||||
MFN1 | Mitofusin-1; Mitochondrial outer membrane GTPase that mediates mitochondrial clustering and fusion. Membrane clustering requires GTPase activity. It may involve a major rearrangement of the coiled coil domains. Mitochondria are highly dynamic organelles, and their morphology is determined by the equilibrium between mitochondrial fusion and fission events. Overexpression induces the formation of mitochondrial networks (in vitro). Has low GTPase activity. (741 aa) | ||||
UQCRB | Cytochrome b-c1 complex subunit 7; Component of the ubiquinol-cytochrome c oxidoreductase, a multisubunit transmembrane complex that is part of the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inn [...] (140 aa) | ||||
POLG2 | DNA polymerase subunit gamma-2, mitochondrial; Mitochondrial polymerase processivity subunit. Stimulates the polymerase and exonuclease activities, and increases the processivity of the enzyme. Binds to ss-DNA. (485 aa) | ||||
DNM1L | Dynamin-1-like protein; Functions in mitochondrial and peroxisomal division. Mediates membrane fission through oligomerization into membrane-associated tubular structures that wrap around the scission site to constrict and sever the mitochondrial membrane through a GTP hydrolysis-dependent mechanism. The specific recruitment at scission sites is mediated by membrane receptors like MFF, MIEF1 and MIEF2 for mitochondrial membranes. While the recruitment by the membrane receptors is GTP-dependent, the following hydrolysis of GTP induces the dissociation from the receptors and allows DNM1L [...] (749 aa) | ||||
TEFM | Transcription elongation factor, mitochondrial; Transcription elongation factor which increases mitochondrial RNA polymerase processivity. Regulates transcription of the mitochondrial genome, including genes important for the oxidative phosphorylation machinery; Belongs to the TEFM family. (360 aa) | ||||
POLRMT | DNA-directed RNA polymerase, mitochondrial; DNA-dependent RNA polymerase catalyzes the transcription of mitochondrial DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of the mitochondrial transcription initiation complex, composed at least of TFB2M, TFAM and POLRMT that is required for basal transcription of mitochondrial DNA. In this complex, TFAM recruits POLRMT to a specific promoter whereas TFB2M induces structural changes in POLRMT to enable promoter opening and trapping of the DNA non-template strand. (1230 aa) | ||||
COX7B | Cytochrome c oxidase subunit 7B, mitochondrial; Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol- cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane [...] (80 aa) | ||||
NDUFV1 | NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (464 aa) |