node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ACTB | ARG1 | ENSP00000494750 | ENSP00000349446 | Actin, cytoplasmic 1, N-terminally processed; Actin is a highly conserved protein that polymerizes to produce filaments that form cross-linked networks in the cytoplasm of cells. Actin exists in both monomeric (G-actin) and polymeric (F-actin) forms, both forms playing key functions, such as cell motility and contraction. In addition to their role in the cytoplasmic cytoskeleton, G- and F-actin also localize in the nucleus, and regulate gene transcription and motility and repair of damaged DNA. | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. Belongs to the arginase family. | 0.595 |
ACTB | ARG2 | ENSP00000494750 | ENSP00000261783 | Actin, cytoplasmic 1, N-terminally processed; Actin is a highly conserved protein that polymerizes to produce filaments that form cross-linked networks in the cytoplasm of cells. Actin exists in both monomeric (G-actin) and polymeric (F-actin) forms, both forms playing key functions, such as cell motility and contraction. In addition to their role in the cytoplasmic cytoskeleton, G- and F-actin also localize in the nucleus, and regulate gene transcription and motility and repair of damaged DNA. | Arginase-2, mitochondrial; May play a role in the regulation of extra-urea cycle arginine metabolism and also in down-regulation of nitric oxide synthesis. Extrahepatic arginase functions to regulate L-arginine bioavailability to nitric oxid synthase (NOS). Arginine metabolism is a critical regulator of innate and adaptive immune responses. Seems to be involved in negative regulation of the survival capacity of activated CD4(+) and CD8(+) T cells. May suppress inflammation- related signaling in asthmatic airway epithelium. May contribute to the immune evasion of H.pylori by restricting [...] | 0.424 |
ACTB | NOS2 | ENSP00000494750 | ENSP00000327251 | Actin, cytoplasmic 1, N-terminally processed; Actin is a highly conserved protein that polymerizes to produce filaments that form cross-linked networks in the cytoplasm of cells. Actin exists in both monomeric (G-actin) and polymeric (F-actin) forms, both forms playing key functions, such as cell motility and contraction. In addition to their role in the cytoplasmic cytoskeleton, G- and F-actin also localize in the nucleus, and regulate gene transcription and motility and repair of damaged DNA. | Nitric oxide synthase, inducible; Produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body. In macrophages, NO mediates tumoricidal and bactericidal actions. Also has nitrosylase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such PTGS2/COX2 (By similarity). As component of the iNOS-S100A8/9 transnitrosylase complex involved in the selective inflammatory stimulus-dependent S-nitrosylation of GAPDH on 'Cys-247' implicated in regulation of the GAIT complex activity and probably multiple targets including ANXA5, EZR [...] | 0.576 |
ACTB | ODC1 | ENSP00000494750 | ENSP00000234111 | Actin, cytoplasmic 1, N-terminally processed; Actin is a highly conserved protein that polymerizes to produce filaments that form cross-linked networks in the cytoplasm of cells. Actin exists in both monomeric (G-actin) and polymeric (F-actin) forms, both forms playing key functions, such as cell motility and contraction. In addition to their role in the cytoplasmic cytoskeleton, G- and F-actin also localize in the nucleus, and regulate gene transcription and motility and repair of damaged DNA. | Ornithine decarboxylase; Catalyzes the first and rate-limiting step of polyamine biosynthesis that converts ornithine into putrescine, which is the precursor for the polyamines, spermidine and spermine. Polyamines are essential for cell proliferation and are implicated in cellular processes, ranging from DNA replication to apoptosis. Belongs to the Orn/Lys/Arg decarboxylase class-II family. | 0.424 |
ACTB | PXDN | ENSP00000494750 | ENSP00000252804 | Actin, cytoplasmic 1, N-terminally processed; Actin is a highly conserved protein that polymerizes to produce filaments that form cross-linked networks in the cytoplasm of cells. Actin exists in both monomeric (G-actin) and polymeric (F-actin) forms, both forms playing key functions, such as cell motility and contraction. In addition to their role in the cytoplasmic cytoskeleton, G- and F-actin also localize in the nucleus, and regulate gene transcription and motility and repair of damaged DNA. | Peroxidasin homolog; Displays low peroxidase activity and is likely to participate in H(2)O(2) metabolism and peroxidative reactions in the cardiovascular system. Plays a role in extracellular matrix formation. | 0.925 |
ACTB | PXDNL | ENSP00000494750 | ENSP00000348645 | Actin, cytoplasmic 1, N-terminally processed; Actin is a highly conserved protein that polymerizes to produce filaments that form cross-linked networks in the cytoplasm of cells. Actin exists in both monomeric (G-actin) and polymeric (F-actin) forms, both forms playing key functions, such as cell motility and contraction. In addition to their role in the cytoplasmic cytoskeleton, G- and F-actin also localize in the nucleus, and regulate gene transcription and motility and repair of damaged DNA. | Peroxidasin-like protein; [Isoform PMR1]: Endonuclease selectively degrading some target mRNAs while they are engaged by translating ribosomes, among which albumin and beta-globin mRNAs. | 0.924 |
ARG1 | ACTB | ENSP00000349446 | ENSP00000494750 | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. Belongs to the arginase family. | Actin, cytoplasmic 1, N-terminally processed; Actin is a highly conserved protein that polymerizes to produce filaments that form cross-linked networks in the cytoplasm of cells. Actin exists in both monomeric (G-actin) and polymeric (F-actin) forms, both forms playing key functions, such as cell motility and contraction. In addition to their role in the cytoplasmic cytoskeleton, G- and F-actin also localize in the nucleus, and regulate gene transcription and motility and repair of damaged DNA. | 0.595 |
ARG1 | ARG2 | ENSP00000349446 | ENSP00000261783 | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. Belongs to the arginase family. | Arginase-2, mitochondrial; May play a role in the regulation of extra-urea cycle arginine metabolism and also in down-regulation of nitric oxide synthesis. Extrahepatic arginase functions to regulate L-arginine bioavailability to nitric oxid synthase (NOS). Arginine metabolism is a critical regulator of innate and adaptive immune responses. Seems to be involved in negative regulation of the survival capacity of activated CD4(+) and CD8(+) T cells. May suppress inflammation- related signaling in asthmatic airway epithelium. May contribute to the immune evasion of H.pylori by restricting [...] | 0.933 |
ARG1 | NOS2 | ENSP00000349446 | ENSP00000327251 | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. Belongs to the arginase family. | Nitric oxide synthase, inducible; Produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body. In macrophages, NO mediates tumoricidal and bactericidal actions. Also has nitrosylase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such PTGS2/COX2 (By similarity). As component of the iNOS-S100A8/9 transnitrosylase complex involved in the selective inflammatory stimulus-dependent S-nitrosylation of GAPDH on 'Cys-247' implicated in regulation of the GAIT complex activity and probably multiple targets including ANXA5, EZR [...] | 0.980 |
ARG1 | ODC1 | ENSP00000349446 | ENSP00000234111 | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. Belongs to the arginase family. | Ornithine decarboxylase; Catalyzes the first and rate-limiting step of polyamine biosynthesis that converts ornithine into putrescine, which is the precursor for the polyamines, spermidine and spermine. Polyamines are essential for cell proliferation and are implicated in cellular processes, ranging from DNA replication to apoptosis. Belongs to the Orn/Lys/Arg decarboxylase class-II family. | 0.984 |
ARG1 | PAOX | ENSP00000349446 | ENSP00000278060 | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. Belongs to the arginase family. | Peroxisomal N(1)-acetyl-spermine/spermidine oxidase; Flavoenzyme which catalyzes the oxidation of N(1)- acetylspermine to spermidine and is thus involved in the polyamine back-conversion. Can also oxidize N(1)- acetylspermidine to putrescine. Substrate specificity: N(1)- acetylspermine = N(1)-acetylspermidine > N(1),N(12)-diacylspermine >> spermine. Does not oxidize spermidine. Plays an important role in the regulation of polyamine intracellular concentration and has the potential to act as a determinant of cellular sensitivity to the antitumor polyamine analogs. | 0.410 |
ARG1 | PXDN | ENSP00000349446 | ENSP00000252804 | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. Belongs to the arginase family. | Peroxidasin homolog; Displays low peroxidase activity and is likely to participate in H(2)O(2) metabolism and peroxidative reactions in the cardiovascular system. Plays a role in extracellular matrix formation. | 0.525 |
ARG1 | PXDNL | ENSP00000349446 | ENSP00000348645 | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. Belongs to the arginase family. | Peroxidasin-like protein; [Isoform PMR1]: Endonuclease selectively degrading some target mRNAs while they are engaged by translating ribosomes, among which albumin and beta-globin mRNAs. | 0.524 |
ARG1 | SLC7A2 | ENSP00000349446 | ENSP00000004531 | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. Belongs to the arginase family. | Cationic amino acid transporter 2; Functions as permease involved in the transport of the cationic amino acids (arginine, lysine and ornithine); the affinity for its substrates differs between isoforms created by alternative splicing. Isoform 1 functions as permease that mediates the transport of the cationic amino acids (arginine, lysine and ornithine), and it has much higher affinity for arginine than isoform 2. Isoform 2 functions as low-affinity, high capacity permease involved in the transport of the cationic amino acids (arginine, lysine and ornithine). May play a role in classic [...] | 0.841 |
ARG1 | SMS | ENSP00000349446 | ENSP00000385746 | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. Belongs to the arginase family. | Spermine synthase; Catalyzes the production of spermine from spermidine and decarboxylated S-adenosylmethionine (dcSAM). | 0.832 |
ARG1 | SRM | ENSP00000349446 | ENSP00000366156 | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. Belongs to the arginase family. | Spermidine synthase; Catalyzes the production of spermidine from putrescine and decarboxylated S-adenosylmethionine (dcSAM). Has a strong preference for putrescine as substrate, and has very low activity towards 1,3- diaminopropane. Has extremely low activity towards spermidine. | 0.857 |
ARG2 | ACTB | ENSP00000261783 | ENSP00000494750 | Arginase-2, mitochondrial; May play a role in the regulation of extra-urea cycle arginine metabolism and also in down-regulation of nitric oxide synthesis. Extrahepatic arginase functions to regulate L-arginine bioavailability to nitric oxid synthase (NOS). Arginine metabolism is a critical regulator of innate and adaptive immune responses. Seems to be involved in negative regulation of the survival capacity of activated CD4(+) and CD8(+) T cells. May suppress inflammation- related signaling in asthmatic airway epithelium. May contribute to the immune evasion of H.pylori by restricting [...] | Actin, cytoplasmic 1, N-terminally processed; Actin is a highly conserved protein that polymerizes to produce filaments that form cross-linked networks in the cytoplasm of cells. Actin exists in both monomeric (G-actin) and polymeric (F-actin) forms, both forms playing key functions, such as cell motility and contraction. In addition to their role in the cytoplasmic cytoskeleton, G- and F-actin also localize in the nucleus, and regulate gene transcription and motility and repair of damaged DNA. | 0.424 |
ARG2 | ARG1 | ENSP00000261783 | ENSP00000349446 | Arginase-2, mitochondrial; May play a role in the regulation of extra-urea cycle arginine metabolism and also in down-regulation of nitric oxide synthesis. Extrahepatic arginase functions to regulate L-arginine bioavailability to nitric oxid synthase (NOS). Arginine metabolism is a critical regulator of innate and adaptive immune responses. Seems to be involved in negative regulation of the survival capacity of activated CD4(+) and CD8(+) T cells. May suppress inflammation- related signaling in asthmatic airway epithelium. May contribute to the immune evasion of H.pylori by restricting [...] | Arginase-1; Key element of the urea cycle converting L-arginine to urea and L-ornithine, which is further metabolized into metabolites proline and polyamides that drive collagen synthesis and bioenergetic pathways critical for cell proliferation, respectively; the urea cycle takes place primarily in the liver and, to a lesser extent, in the kidneys. Belongs to the arginase family. | 0.933 |
ARG2 | NOS2 | ENSP00000261783 | ENSP00000327251 | Arginase-2, mitochondrial; May play a role in the regulation of extra-urea cycle arginine metabolism and also in down-regulation of nitric oxide synthesis. Extrahepatic arginase functions to regulate L-arginine bioavailability to nitric oxid synthase (NOS). Arginine metabolism is a critical regulator of innate and adaptive immune responses. Seems to be involved in negative regulation of the survival capacity of activated CD4(+) and CD8(+) T cells. May suppress inflammation- related signaling in asthmatic airway epithelium. May contribute to the immune evasion of H.pylori by restricting [...] | Nitric oxide synthase, inducible; Produces nitric oxide (NO) which is a messenger molecule with diverse functions throughout the body. In macrophages, NO mediates tumoricidal and bactericidal actions. Also has nitrosylase activity and mediates cysteine S-nitrosylation of cytoplasmic target proteins such PTGS2/COX2 (By similarity). As component of the iNOS-S100A8/9 transnitrosylase complex involved in the selective inflammatory stimulus-dependent S-nitrosylation of GAPDH on 'Cys-247' implicated in regulation of the GAIT complex activity and probably multiple targets including ANXA5, EZR [...] | 0.970 |
ARG2 | ODC1 | ENSP00000261783 | ENSP00000234111 | Arginase-2, mitochondrial; May play a role in the regulation of extra-urea cycle arginine metabolism and also in down-regulation of nitric oxide synthesis. Extrahepatic arginase functions to regulate L-arginine bioavailability to nitric oxid synthase (NOS). Arginine metabolism is a critical regulator of innate and adaptive immune responses. Seems to be involved in negative regulation of the survival capacity of activated CD4(+) and CD8(+) T cells. May suppress inflammation- related signaling in asthmatic airway epithelium. May contribute to the immune evasion of H.pylori by restricting [...] | Ornithine decarboxylase; Catalyzes the first and rate-limiting step of polyamine biosynthesis that converts ornithine into putrescine, which is the precursor for the polyamines, spermidine and spermine. Polyamines are essential for cell proliferation and are implicated in cellular processes, ranging from DNA replication to apoptosis. Belongs to the Orn/Lys/Arg decarboxylase class-II family. | 0.987 |