node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
EDN1 | PRKG1 | ENSP00000368683 | ENSP00000363092 | Big endothelin-1; Endothelins are endothelium-derived vasoconstrictor peptides (By similarity). Probable ligand for G-protein coupled receptors EDNRA and EDNRB which activates PTK2B, BCAR1, BCAR3 and, GTPases RAP1 and RHOA cascade in glomerular mesangial cells. Belongs to the endothelin/sarafotoxin family. | cGMP-dependent protein kinase 1; Serine/threonine protein kinase that acts as key mediator of the nitric oxide (NO)/cGMP signaling pathway. GMP binding activates PRKG1, which phosphorylates serines and threonines on many cellular proteins. Numerous protein targets for PRKG1 phosphorylation are implicated in modulating cellular calcium, but the contribution of each of these targets may vary substantially among cell types. Proteins that are phosphorylated by PRKG1 regulate platelet activation and adhesion, smooth muscle contraction, cardiac function, gene expression, feedback of the NO-s [...] | 0.435 |
ITPR1 | ITPR3 | ENSP00000306253 | ENSP00000363435 | Inositol 1,4,5-trisphosphate receptor type 1; Intracellular channel that mediates calcium release from the endoplasmic reticulum following stimulation by inositol 1,4,5- trisphosphate. Involved in the regulation of epithelial secretion of electrolytes and fluid through the interaction with AHCYL1 (By similarity). Plays a role in ER stress-induced apoptosis. Cytoplasmic calcium released from the ER triggers apoptosis by the activation of CaM kinase II, eventually leading to the activation of downstream apoptosis pathways (By similarity). | Inositol 1,4,5-trisphosphate receptor type 3; Receptor for inositol 1,4,5-trisphosphate, a second messenger that mediates the release of intracellular calcium. | 0.965 |
ITPR1 | MRVI1 | ENSP00000306253 | ENSP00000412130 | Inositol 1,4,5-trisphosphate receptor type 1; Intracellular channel that mediates calcium release from the endoplasmic reticulum following stimulation by inositol 1,4,5- trisphosphate. Involved in the regulation of epithelial secretion of electrolytes and fluid through the interaction with AHCYL1 (By similarity). Plays a role in ER stress-induced apoptosis. Cytoplasmic calcium released from the ER triggers apoptosis by the activation of CaM kinase II, eventually leading to the activation of downstream apoptosis pathways (By similarity). | Protein MRVI1; Plays a role as NO/PRKG1-dependent regulator of IP3-induced calcium release; its phosphorylation by PRKG1 inhibits bradykinin and IP3-induced calcium release from intracellular stores. Recruits PRKG1 to the endoplasmic reticulum and may mediate the assembly of PRKG1 and ITPR1 in a macrocomplex. Involved in PRKG1 signaling cascade leading to inhibition of platelet activation and aggregation. Mediates also NO- dependent inhibition of calcium signaling in gastrointestinal smooth muscle contributing to NO-dependent relaxation. | 0.995 |
ITPR1 | PRKG1 | ENSP00000306253 | ENSP00000363092 | Inositol 1,4,5-trisphosphate receptor type 1; Intracellular channel that mediates calcium release from the endoplasmic reticulum following stimulation by inositol 1,4,5- trisphosphate. Involved in the regulation of epithelial secretion of electrolytes and fluid through the interaction with AHCYL1 (By similarity). Plays a role in ER stress-induced apoptosis. Cytoplasmic calcium released from the ER triggers apoptosis by the activation of CaM kinase II, eventually leading to the activation of downstream apoptosis pathways (By similarity). | cGMP-dependent protein kinase 1; Serine/threonine protein kinase that acts as key mediator of the nitric oxide (NO)/cGMP signaling pathway. GMP binding activates PRKG1, which phosphorylates serines and threonines on many cellular proteins. Numerous protein targets for PRKG1 phosphorylation are implicated in modulating cellular calcium, but the contribution of each of these targets may vary substantially among cell types. Proteins that are phosphorylated by PRKG1 regulate platelet activation and adhesion, smooth muscle contraction, cardiac function, gene expression, feedback of the NO-s [...] | 0.934 |
ITPR1 | RYR1 | ENSP00000306253 | ENSP00000352608 | Inositol 1,4,5-trisphosphate receptor type 1; Intracellular channel that mediates calcium release from the endoplasmic reticulum following stimulation by inositol 1,4,5- trisphosphate. Involved in the regulation of epithelial secretion of electrolytes and fluid through the interaction with AHCYL1 (By similarity). Plays a role in ER stress-induced apoptosis. Cytoplasmic calcium released from the ER triggers apoptosis by the activation of CaM kinase II, eventually leading to the activation of downstream apoptosis pathways (By similarity). | Ryanodine receptor 1; Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering muscle contraction following depolarization of T-tubules. Repeated very high-level exercise increases the open probability of the channel and leads to Ca(2+) leaking into the cytoplasm. Can also mediate the release of Ca(2+) from intracellular stores in neurons, and may thereby promote prolonged Ca(2+) signaling in the brain. Required for normal embryonic development of muscle fibers and skeletal muscle. Required for nor [...] | 0.400 |
ITPR1 | RYR2 | ENSP00000306253 | ENSP00000355533 | Inositol 1,4,5-trisphosphate receptor type 1; Intracellular channel that mediates calcium release from the endoplasmic reticulum following stimulation by inositol 1,4,5- trisphosphate. Involved in the regulation of epithelial secretion of electrolytes and fluid through the interaction with AHCYL1 (By similarity). Plays a role in ER stress-induced apoptosis. Cytoplasmic calcium released from the ER triggers apoptosis by the activation of CaM kinase II, eventually leading to the activation of downstream apoptosis pathways (By similarity). | Ryanodine receptor 2; Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering cardiac muscle contraction. Aberrant channel activation can lead to cardiac arrhythmia. In cardiac myocytes, calcium release is triggered by increased Ca(2+) levels due to activation of the L-type calcium channel CACNA1C. The calcium channel activity is modulated by formation of heterotetramers with RYR3. Required for cellular calcium ion homeostasis. Required for embryonic heart development. Belongs to the ryanodine rec [...] | 0.639 |
ITPR3 | ITPR1 | ENSP00000363435 | ENSP00000306253 | Inositol 1,4,5-trisphosphate receptor type 3; Receptor for inositol 1,4,5-trisphosphate, a second messenger that mediates the release of intracellular calcium. | Inositol 1,4,5-trisphosphate receptor type 1; Intracellular channel that mediates calcium release from the endoplasmic reticulum following stimulation by inositol 1,4,5- trisphosphate. Involved in the regulation of epithelial secretion of electrolytes and fluid through the interaction with AHCYL1 (By similarity). Plays a role in ER stress-induced apoptosis. Cytoplasmic calcium released from the ER triggers apoptosis by the activation of CaM kinase II, eventually leading to the activation of downstream apoptosis pathways (By similarity). | 0.965 |
ITPR3 | MRVI1 | ENSP00000363435 | ENSP00000412130 | Inositol 1,4,5-trisphosphate receptor type 3; Receptor for inositol 1,4,5-trisphosphate, a second messenger that mediates the release of intracellular calcium. | Protein MRVI1; Plays a role as NO/PRKG1-dependent regulator of IP3-induced calcium release; its phosphorylation by PRKG1 inhibits bradykinin and IP3-induced calcium release from intracellular stores. Recruits PRKG1 to the endoplasmic reticulum and may mediate the assembly of PRKG1 and ITPR1 in a macrocomplex. Involved in PRKG1 signaling cascade leading to inhibition of platelet activation and aggregation. Mediates also NO- dependent inhibition of calcium signaling in gastrointestinal smooth muscle contributing to NO-dependent relaxation. | 0.986 |
ITPR3 | PRKG1 | ENSP00000363435 | ENSP00000363092 | Inositol 1,4,5-trisphosphate receptor type 3; Receptor for inositol 1,4,5-trisphosphate, a second messenger that mediates the release of intracellular calcium. | cGMP-dependent protein kinase 1; Serine/threonine protein kinase that acts as key mediator of the nitric oxide (NO)/cGMP signaling pathway. GMP binding activates PRKG1, which phosphorylates serines and threonines on many cellular proteins. Numerous protein targets for PRKG1 phosphorylation are implicated in modulating cellular calcium, but the contribution of each of these targets may vary substantially among cell types. Proteins that are phosphorylated by PRKG1 regulate platelet activation and adhesion, smooth muscle contraction, cardiac function, gene expression, feedback of the NO-s [...] | 0.703 |
ITPR3 | RYR2 | ENSP00000363435 | ENSP00000355533 | Inositol 1,4,5-trisphosphate receptor type 3; Receptor for inositol 1,4,5-trisphosphate, a second messenger that mediates the release of intracellular calcium. | Ryanodine receptor 2; Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering cardiac muscle contraction. Aberrant channel activation can lead to cardiac arrhythmia. In cardiac myocytes, calcium release is triggered by increased Ca(2+) levels due to activation of the L-type calcium channel CACNA1C. The calcium channel activity is modulated by formation of heterotetramers with RYR3. Required for cellular calcium ion homeostasis. Required for embryonic heart development. Belongs to the ryanodine rec [...] | 0.625 |
MRVI1 | ITPR1 | ENSP00000412130 | ENSP00000306253 | Protein MRVI1; Plays a role as NO/PRKG1-dependent regulator of IP3-induced calcium release; its phosphorylation by PRKG1 inhibits bradykinin and IP3-induced calcium release from intracellular stores. Recruits PRKG1 to the endoplasmic reticulum and may mediate the assembly of PRKG1 and ITPR1 in a macrocomplex. Involved in PRKG1 signaling cascade leading to inhibition of platelet activation and aggregation. Mediates also NO- dependent inhibition of calcium signaling in gastrointestinal smooth muscle contributing to NO-dependent relaxation. | Inositol 1,4,5-trisphosphate receptor type 1; Intracellular channel that mediates calcium release from the endoplasmic reticulum following stimulation by inositol 1,4,5- trisphosphate. Involved in the regulation of epithelial secretion of electrolytes and fluid through the interaction with AHCYL1 (By similarity). Plays a role in ER stress-induced apoptosis. Cytoplasmic calcium released from the ER triggers apoptosis by the activation of CaM kinase II, eventually leading to the activation of downstream apoptosis pathways (By similarity). | 0.995 |
MRVI1 | ITPR3 | ENSP00000412130 | ENSP00000363435 | Protein MRVI1; Plays a role as NO/PRKG1-dependent regulator of IP3-induced calcium release; its phosphorylation by PRKG1 inhibits bradykinin and IP3-induced calcium release from intracellular stores. Recruits PRKG1 to the endoplasmic reticulum and may mediate the assembly of PRKG1 and ITPR1 in a macrocomplex. Involved in PRKG1 signaling cascade leading to inhibition of platelet activation and aggregation. Mediates also NO- dependent inhibition of calcium signaling in gastrointestinal smooth muscle contributing to NO-dependent relaxation. | Inositol 1,4,5-trisphosphate receptor type 3; Receptor for inositol 1,4,5-trisphosphate, a second messenger that mediates the release of intracellular calcium. | 0.986 |
MRVI1 | PRKG1 | ENSP00000412130 | ENSP00000363092 | Protein MRVI1; Plays a role as NO/PRKG1-dependent regulator of IP3-induced calcium release; its phosphorylation by PRKG1 inhibits bradykinin and IP3-induced calcium release from intracellular stores. Recruits PRKG1 to the endoplasmic reticulum and may mediate the assembly of PRKG1 and ITPR1 in a macrocomplex. Involved in PRKG1 signaling cascade leading to inhibition of platelet activation and aggregation. Mediates also NO- dependent inhibition of calcium signaling in gastrointestinal smooth muscle contributing to NO-dependent relaxation. | cGMP-dependent protein kinase 1; Serine/threonine protein kinase that acts as key mediator of the nitric oxide (NO)/cGMP signaling pathway. GMP binding activates PRKG1, which phosphorylates serines and threonines on many cellular proteins. Numerous protein targets for PRKG1 phosphorylation are implicated in modulating cellular calcium, but the contribution of each of these targets may vary substantially among cell types. Proteins that are phosphorylated by PRKG1 regulate platelet activation and adhesion, smooth muscle contraction, cardiac function, gene expression, feedback of the NO-s [...] | 0.996 |
MRVI1 | RYR2 | ENSP00000412130 | ENSP00000355533 | Protein MRVI1; Plays a role as NO/PRKG1-dependent regulator of IP3-induced calcium release; its phosphorylation by PRKG1 inhibits bradykinin and IP3-induced calcium release from intracellular stores. Recruits PRKG1 to the endoplasmic reticulum and may mediate the assembly of PRKG1 and ITPR1 in a macrocomplex. Involved in PRKG1 signaling cascade leading to inhibition of platelet activation and aggregation. Mediates also NO- dependent inhibition of calcium signaling in gastrointestinal smooth muscle contributing to NO-dependent relaxation. | Ryanodine receptor 2; Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering cardiac muscle contraction. Aberrant channel activation can lead to cardiac arrhythmia. In cardiac myocytes, calcium release is triggered by increased Ca(2+) levels due to activation of the L-type calcium channel CACNA1C. The calcium channel activity is modulated by formation of heterotetramers with RYR3. Required for cellular calcium ion homeostasis. Required for embryonic heart development. Belongs to the ryanodine rec [...] | 0.443 |
PRKG1 | EDN1 | ENSP00000363092 | ENSP00000368683 | cGMP-dependent protein kinase 1; Serine/threonine protein kinase that acts as key mediator of the nitric oxide (NO)/cGMP signaling pathway. GMP binding activates PRKG1, which phosphorylates serines and threonines on many cellular proteins. Numerous protein targets for PRKG1 phosphorylation are implicated in modulating cellular calcium, but the contribution of each of these targets may vary substantially among cell types. Proteins that are phosphorylated by PRKG1 regulate platelet activation and adhesion, smooth muscle contraction, cardiac function, gene expression, feedback of the NO-s [...] | Big endothelin-1; Endothelins are endothelium-derived vasoconstrictor peptides (By similarity). Probable ligand for G-protein coupled receptors EDNRA and EDNRB which activates PTK2B, BCAR1, BCAR3 and, GTPases RAP1 and RHOA cascade in glomerular mesangial cells. Belongs to the endothelin/sarafotoxin family. | 0.435 |
PRKG1 | ITPR1 | ENSP00000363092 | ENSP00000306253 | cGMP-dependent protein kinase 1; Serine/threonine protein kinase that acts as key mediator of the nitric oxide (NO)/cGMP signaling pathway. GMP binding activates PRKG1, which phosphorylates serines and threonines on many cellular proteins. Numerous protein targets for PRKG1 phosphorylation are implicated in modulating cellular calcium, but the contribution of each of these targets may vary substantially among cell types. Proteins that are phosphorylated by PRKG1 regulate platelet activation and adhesion, smooth muscle contraction, cardiac function, gene expression, feedback of the NO-s [...] | Inositol 1,4,5-trisphosphate receptor type 1; Intracellular channel that mediates calcium release from the endoplasmic reticulum following stimulation by inositol 1,4,5- trisphosphate. Involved in the regulation of epithelial secretion of electrolytes and fluid through the interaction with AHCYL1 (By similarity). Plays a role in ER stress-induced apoptosis. Cytoplasmic calcium released from the ER triggers apoptosis by the activation of CaM kinase II, eventually leading to the activation of downstream apoptosis pathways (By similarity). | 0.934 |
PRKG1 | ITPR3 | ENSP00000363092 | ENSP00000363435 | cGMP-dependent protein kinase 1; Serine/threonine protein kinase that acts as key mediator of the nitric oxide (NO)/cGMP signaling pathway. GMP binding activates PRKG1, which phosphorylates serines and threonines on many cellular proteins. Numerous protein targets for PRKG1 phosphorylation are implicated in modulating cellular calcium, but the contribution of each of these targets may vary substantially among cell types. Proteins that are phosphorylated by PRKG1 regulate platelet activation and adhesion, smooth muscle contraction, cardiac function, gene expression, feedback of the NO-s [...] | Inositol 1,4,5-trisphosphate receptor type 3; Receptor for inositol 1,4,5-trisphosphate, a second messenger that mediates the release of intracellular calcium. | 0.703 |
PRKG1 | MRVI1 | ENSP00000363092 | ENSP00000412130 | cGMP-dependent protein kinase 1; Serine/threonine protein kinase that acts as key mediator of the nitric oxide (NO)/cGMP signaling pathway. GMP binding activates PRKG1, which phosphorylates serines and threonines on many cellular proteins. Numerous protein targets for PRKG1 phosphorylation are implicated in modulating cellular calcium, but the contribution of each of these targets may vary substantially among cell types. Proteins that are phosphorylated by PRKG1 regulate platelet activation and adhesion, smooth muscle contraction, cardiac function, gene expression, feedback of the NO-s [...] | Protein MRVI1; Plays a role as NO/PRKG1-dependent regulator of IP3-induced calcium release; its phosphorylation by PRKG1 inhibits bradykinin and IP3-induced calcium release from intracellular stores. Recruits PRKG1 to the endoplasmic reticulum and may mediate the assembly of PRKG1 and ITPR1 in a macrocomplex. Involved in PRKG1 signaling cascade leading to inhibition of platelet activation and aggregation. Mediates also NO- dependent inhibition of calcium signaling in gastrointestinal smooth muscle contributing to NO-dependent relaxation. | 0.996 |
PRKG1 | RYR2 | ENSP00000363092 | ENSP00000355533 | cGMP-dependent protein kinase 1; Serine/threonine protein kinase that acts as key mediator of the nitric oxide (NO)/cGMP signaling pathway. GMP binding activates PRKG1, which phosphorylates serines and threonines on many cellular proteins. Numerous protein targets for PRKG1 phosphorylation are implicated in modulating cellular calcium, but the contribution of each of these targets may vary substantially among cell types. Proteins that are phosphorylated by PRKG1 regulate platelet activation and adhesion, smooth muscle contraction, cardiac function, gene expression, feedback of the NO-s [...] | Ryanodine receptor 2; Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering cardiac muscle contraction. Aberrant channel activation can lead to cardiac arrhythmia. In cardiac myocytes, calcium release is triggered by increased Ca(2+) levels due to activation of the L-type calcium channel CACNA1C. The calcium channel activity is modulated by formation of heterotetramers with RYR3. Required for cellular calcium ion homeostasis. Required for embryonic heart development. Belongs to the ryanodine rec [...] | 0.413 |
RYR1 | ITPR1 | ENSP00000352608 | ENSP00000306253 | Ryanodine receptor 1; Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering muscle contraction following depolarization of T-tubules. Repeated very high-level exercise increases the open probability of the channel and leads to Ca(2+) leaking into the cytoplasm. Can also mediate the release of Ca(2+) from intracellular stores in neurons, and may thereby promote prolonged Ca(2+) signaling in the brain. Required for normal embryonic development of muscle fibers and skeletal muscle. Required for nor [...] | Inositol 1,4,5-trisphosphate receptor type 1; Intracellular channel that mediates calcium release from the endoplasmic reticulum following stimulation by inositol 1,4,5- trisphosphate. Involved in the regulation of epithelial secretion of electrolytes and fluid through the interaction with AHCYL1 (By similarity). Plays a role in ER stress-induced apoptosis. Cytoplasmic calcium released from the ER triggers apoptosis by the activation of CaM kinase II, eventually leading to the activation of downstream apoptosis pathways (By similarity). | 0.400 |