STRINGSTRING
APOBEC3F APOBEC3F APOBEC3C APOBEC3C APOBEC3A APOBEC3A APOBEC3G APOBEC3G APOBEC3H APOBEC3H ESR1 ESR1 APOBEC3D APOBEC3D APOBEC1 APOBEC1 APOB APOB APOBEC2 APOBEC2 TP53 TP53 APOBEC3B APOBEC3B
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
APOBEC3FDNA dC->dU-editing enzyme APOBEC-3F; DNA deaminase (cytidine deaminase) which acts as an inhibitor of retrovirus replication and retrotransposon mobility via deaminase- dependent and -independent mechanisms. Exhibits antiviral activity against vif-deficient HIV-1. After the penetration of retroviral nucleocapsids into target cells of infection and the initiation of reverse transcription, it can induce the conversion of cytosine to uracil in the minus-sense single-strand viral DNA, leading to G-to-A hypermutations in the subsequent plus-strand viral DNA. The resultant detrimental levels [...] (373 aa)
APOBEC3CDNA dC->dU-editing enzyme APOBEC-3C; DNA deaminase (cytidine deaminase) which acts as an inhibitor of retrovirus replication and retrotransposon mobility via deaminase- dependent and -independent mechanisms. After the penetration of retroviral nucleocapsids into target cells of infection and the initiation of reverse transcription, it can induce the conversion of cytosine to uracil in the minus-sense single-strand viral DNA, leading to G-to-A hypermutations in the subsequent plus-strand viral DNA. The resultant detrimental levels of mutations in the proviral genome, along with a deamin [...] (190 aa)
APOBEC3ADNA dC->dU-editing enzyme APOBEC-3A; DNA deaminase (cytidine deaminase) with restriction activity against viruses, foreign DNA and mobility of retrotransposons. Exhibits antiviral activity against adeno-associated virus (AAV) and human T- cell leukemia virus type 1 (HTLV-1) and may inhibit the mobility of LTR and non-LTR retrotransposons. Selectively targets single-stranded DNA and can deaminate both methylcytosine and cytosine in foreign DNA. Can induce somatic hypermutation in the nuclear and mitochondrial DNA. May also play a role in the epigenetic regulation of gene expression thro [...] (199 aa)
APOBEC3GDNA dC->dU-editing enzyme APOBEC-3G; DNA deaminase (cytidine deaminase) which acts as an inhibitor of retrovirus replication and retrotransposon mobility via deaminase- dependent and -independent mechanisms. Exhibits potent antiviral activity against vif-deficient HIV-1. After the penetration of retroviral nucleocapsids into target cells of infection and the initiation of reverse transcription, it can induce the conversion of cytosine to uracil in the minus-sense single-strand viral DNA, leading to G-to-A hypermutations in the subsequent plus-strand viral DNA. The resultant detrimental [...] (384 aa)
APOBEC3HDNA dC->dU-editing enzyme APOBEC-3H; DNA deaminase (cytidine deaminase) which acts as an inhibitor of retrovirus replication and retrotransposon mobility via deaminase- dependent and -independent mechanisms. The A3H-var/haplotype 2 exhibits antiviral activity against vif-deficient HIV-1. After the penetration of retroviral nucleocapsids into target cells of infection and the initiation of reverse transcription, it can induce the conversion of cytosine to uracil in the minus-sense single-strand viral DNA, leading to G-to-A hypermutations in the subsequent plus-strand viral DNA. The resu [...] (200 aa)
ESR1Estrogen receptor; Nuclear hormone receptor. The steroid hormones and their receptors are involved in the regulation of eukaryotic gene expression and affect cellular proliferation and differentiation in target tissues. Ligand-dependent nuclear transactivation involves either direct homodimer binding to a palindromic estrogen response element (ERE) sequence or association with other DNA-binding transcription factors, such as AP-1/c-Jun, c-Fos, ATF-2, Sp1 and Sp3, to mediate ERE- independent signaling. Ligand binding induces a conformational change allowing subsequent or combinatorial a [...] (595 aa)
APOBEC3DDNA dC->dU-editing enzyme APOBEC-3D; DNA deaminase (cytidine deaminase) which acts as an inhibitor of retrovirus replication and retrotransposon mobility via deaminase- dependent and -independent mechanisms. Exhibits antiviral activity against vif-deficient HIV-1. After the penetration of retroviral nucleocapsids into target cells of infection and the initiation of reverse transcription, it can induce the conversion of cytosine to uracil in the minus-sense single-strand viral DNA, leading to G-to-A hypermutations in the subsequent plus-strand viral DNA. The resultant detrimental levels [...] (386 aa)
APOBEC1C->U-editing enzyme APOBEC-1; Catalytic component of the apolipoprotein B mRNA editing enzyme complex which is responsible for the postranscriptional editing of a CAA codon for Gln to a UAA codon for stop in the APOB mRNA. Also involved in CGA (Arg) to UGA (Stop) editing in the NF1 mRNA. May also play a role in the epigenetic regulation of gene expression by participating in DNA demethylation; Belongs to the cytidine and deoxycytidylate deaminase family. (236 aa)
APOBApolipoprotein B-100; Apolipoprotein B is a major protein constituent of chylomicrons (apo B-48), LDL (apo B-100) and VLDL (apo B-100). Apo B- 100 functions as a recognition signal for the cellular binding and internalization of LDL particles by the apoB/E receptor. (4563 aa)
APOBEC2C->U-editing enzyme APOBEC-2; Probable C to U editing enzyme whose physiological substrate is not yet known. Does not display detectable apoB mRNA editing. Has a low intrinsic cytidine deaminase activity. May play a role in the epigenetic regulation of gene expression through the process of active DNA demethylation. (224 aa)
TP53Cellular tumor antigen p53; Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type. Involved in cell cycle regulation as a trans-activator that acts to negatively regulate cell division by controlling a set of genes required for this process. One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression. Its pro-apoptotic activity is activated via its intera [...] (393 aa)
APOBEC3BDNA dC->dU-editing enzyme APOBEC-3B; DNA deaminase (cytidine deaminase) which acts as an inhibitor of retrovirus replication and retrotransposon mobility via deaminase- dependent and -independent mechanisms. After the penetration of retroviral nucleocapsids into target cells of infection and the initiation of reverse transcription, it can induce the conversion of cytosine to uracil in the minus-sense single-strand viral DNA, leading to G-to-A hypermutations in the subsequent plus-strand viral DNA. The resultant detrimental levels of mutations in the proviral genome, along with a deamin [...] (382 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (16%) [HD]