STRINGSTRING
MTHFR MTHFR MTR MTR GCSH GCSH AMT AMT DNAJC10 DNAJC10 TYROBP TYROBP MTHFD1 MTHFD1 GCH1 GCH1 MTHFS MTHFS MTHFD2L MTHFD2L MTHFD2 MTHFD2 GLDC GLDC FPGS FPGS
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
MTHFRMethylenetetrahydrofolate reductase; Catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-substrate for homocysteine remethylation to methionine. (697 aa)
MTRMethionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate (By similarity); Belongs to the vitamin-B12 dependent methionine synthase family. (1265 aa)
GCSHGlycine cleavage system H protein, mitochondrial; The glycine cleavage system catalyzes the degradation of glycine. The H protein (GCSH) shuttles the methylamine group of glycine from the P protein (GLDC) to the T protein (GCST). Belongs to the GcvH family. (173 aa)
AMTAminomethyltransferase, mitochondrial; The glycine cleavage system catalyzes the degradation of glycine; Belongs to the GcvT family. (403 aa)
DNAJC10DnaJ homolog subfamily C member 10; Endoplasmic reticulum disulfide reductase involved both in the correct folding of proteins and degradation of misfolded proteins. Required for efficient folding of proteins in the endoplasmic reticulum by catalyzing the removal of non-native disulfide bonds formed during the folding of proteins, such as LDLR. Also involved in endoplasmic reticulum-associated degradation (ERAD) by reducing incorrect disulfide bonds in misfolded glycoproteins recognized by EDEM1. Interaction with HSPA5 is required its activity, not for the disulfide reductase activity, [...] (793 aa)
TYROBPTYRO protein tyrosine kinase-binding protein; Adapter protein which non-covalently associates with activating receptors found on the surface of a variety of immune cells to mediate signaling and cell activation following ligand binding by the receptors. TYROBP is tyrosine-phosphorylated in the ITAM domain following ligand binding by the associated receptors which leads to activation of additional tyrosine kinases and subsequent cell activation. Also has an inhibitory role in some cells. Non-covalently associates with activating receptors of the CD300 family to mediate cell activation ; [...] (113 aa)
MTHFD1C-1-tetrahydrofolate synthase, cytoplasmic, N-terminally processed; Methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1; In the N-terminal section; belongs to the tetrahydrofolate dehydrogenase/cyclohydrolase family. (935 aa)
GCH1GTP cyclohydrolase 1; Positively regulates nitric oxide synthesis in umbilical vein endothelial cells (HUVECs). May be involved in dopamine synthesis. May modify pain sensitivity and persistence. Isoform GCH-1 is the functional enzyme, the potential function of the enzymatically inactive isoforms remains unknown. Belongs to the GTP cyclohydrolase I family. (250 aa)
MTHFS5-formyltetrahydrofolate cyclo-ligase; Contributes to tetrahydrofolate metabolism. Helps regulate carbon flow through the folate-dependent one-carbon metabolic network that supplies carbon for the biosynthesis of purines, thymidine and amino acids. Catalyzes the irreversible conversion of 5- formyltetrahydrofolate (5-FTHF) to yield 5,10-methenyltetrahydrofolate. (203 aa)
MTHFD2LProbable bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase 2; Methylenetetrahydrofolate dehydrogenase 2 like. (347 aa)
MTHFD2Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial; Although its dehydrogenase activity is NAD-specific, it can also utilize NADP at a reduced efficiency. Belongs to the tetrahydrofolate dehydrogenase/cyclohydrolase family. (350 aa)
GLDCGlycine dehydrogenase (decarboxylating), mitochondrial; The glycine cleavage system catalyzes the degradation of glycine. The P protein (GLDC) binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein (GCSH). (1020 aa)
FPGSFolylpolyglutamate synthase, mitochondrial; Catalyzes conversion of folates to polyglutamate derivatives allowing concentration of folate compounds in the cell and the intracellular retention of these cofactors, which are important substrates for most of the folate-dependent enzymes that are involved in one-carbon transfer reactions involved in purine, pyrimidine and amino acid synthesis. Unsubstituted reduced folates are the preferred substrates. Metabolizes methotrexate (MTX) to polyglutamates. (587 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (30%) [HD]