node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ACTB | ATP2A2 | ENSP00000494750 | ENSP00000440045 | Actin, cytoplasmic 1, N-terminally processed; Actin is a highly conserved protein that polymerizes to produce filaments that form cross-linked networks in the cytoplasm of cells. Actin exists in both monomeric (G-actin) and polymeric (F-actin) forms, both forms playing key functions, such as cell motility and contraction. In addition to their role in the cytoplasmic cytoskeleton, G- and F-actin also localize in the nucleus, and regulate gene transcription and motility and repair of damaged DNA. | Sarcoplasmic/endoplasmic reticulum calcium ATPase 2; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Isoform 2 is involved in the regulation of the contraction/relaxation cycle. Acts as a regulator of TNFSF11-mediated Ca(2+) signaling pathways via its interaction with TMEM64 which is critical for the TNFSF11-induced CREB1 activation and mitochondrial ROS generation necessary for proper osteoclast generation. Association between TMEM64 and SERCA2 in the ER leads to cytosolic C [...] | 0.402 |
ACTB | CALB1 | ENSP00000494750 | ENSP00000265431 | Actin, cytoplasmic 1, N-terminally processed; Actin is a highly conserved protein that polymerizes to produce filaments that form cross-linked networks in the cytoplasm of cells. Actin exists in both monomeric (G-actin) and polymeric (F-actin) forms, both forms playing key functions, such as cell motility and contraction. In addition to their role in the cytoplasmic cytoskeleton, G- and F-actin also localize in the nucleus, and regulate gene transcription and motility and repair of damaged DNA. | Calbindin; Buffers cytosolic calcium. May stimulate a membrane Ca(2+)- ATPase and a 3',5'-cyclic nucleotide phosphodiesterase. | 0.488 |
ACTB | CANX | ENSP00000494750 | ENSP00000247461 | Actin, cytoplasmic 1, N-terminally processed; Actin is a highly conserved protein that polymerizes to produce filaments that form cross-linked networks in the cytoplasm of cells. Actin exists in both monomeric (G-actin) and polymeric (F-actin) forms, both forms playing key functions, such as cell motility and contraction. In addition to their role in the cytoplasmic cytoskeleton, G- and F-actin also localize in the nucleus, and regulate gene transcription and motility and repair of damaged DNA. | Calnexin; Calcium-binding protein that interacts with newly synthesized glycoproteins in the endoplasmic reticulum. It may act in assisting protein assembly and/or in the retention within the ER of unassembled protein subunits. It seems to play a major role in the quality control apparatus of the ER by the retention of incorrectly folded proteins. Associated with partial T-cell antigen receptor complexes that escape the ER of immature thymocytes, it may function as a signaling complex regulating thymocyte maturation. Additionally it may play a role in receptor-mediated endocytosis at t [...] | 0.688 |
ACTB | ITPR1 | ENSP00000494750 | ENSP00000306253 | Actin, cytoplasmic 1, N-terminally processed; Actin is a highly conserved protein that polymerizes to produce filaments that form cross-linked networks in the cytoplasm of cells. Actin exists in both monomeric (G-actin) and polymeric (F-actin) forms, both forms playing key functions, such as cell motility and contraction. In addition to their role in the cytoplasmic cytoskeleton, G- and F-actin also localize in the nucleus, and regulate gene transcription and motility and repair of damaged DNA. | Inositol 1,4,5-trisphosphate receptor type 1; Intracellular channel that mediates calcium release from the endoplasmic reticulum following stimulation by inositol 1,4,5- trisphosphate. Involved in the regulation of epithelial secretion of electrolytes and fluid through the interaction with AHCYL1 (By similarity). Plays a role in ER stress-induced apoptosis. Cytoplasmic calcium released from the ER triggers apoptosis by the activation of CaM kinase II, eventually leading to the activation of downstream apoptosis pathways (By similarity). | 0.439 |
ACTB | ITPR3 | ENSP00000494750 | ENSP00000363435 | Actin, cytoplasmic 1, N-terminally processed; Actin is a highly conserved protein that polymerizes to produce filaments that form cross-linked networks in the cytoplasm of cells. Actin exists in both monomeric (G-actin) and polymeric (F-actin) forms, both forms playing key functions, such as cell motility and contraction. In addition to their role in the cytoplasmic cytoskeleton, G- and F-actin also localize in the nucleus, and regulate gene transcription and motility and repair of damaged DNA. | Inositol 1,4,5-trisphosphate receptor type 3; Receptor for inositol 1,4,5-trisphosphate, a second messenger that mediates the release of intracellular calcium. | 0.402 |
ACTB | STIM1 | ENSP00000494750 | ENSP00000478059 | Actin, cytoplasmic 1, N-terminally processed; Actin is a highly conserved protein that polymerizes to produce filaments that form cross-linked networks in the cytoplasm of cells. Actin exists in both monomeric (G-actin) and polymeric (F-actin) forms, both forms playing key functions, such as cell motility and contraction. In addition to their role in the cytoplasmic cytoskeleton, G- and F-actin also localize in the nucleus, and regulate gene transcription and motility and repair of damaged DNA. | Stromal interaction molecule 1; Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Acts as Ca(2+) sensor in the endoplasmic reticulum via its EF-hand domain. Upon Ca(2+) depletion, translocates from the endoplasmic reticulum to the plasma membrane where it activates the Ca(2+) release- activated Ca(2+) (CRAC) channel subunit ORAI1. Involved in enamel formation. Activated following interaction with STIMATE, leading to promote STIM1 conformational switch. | 0.424 |
ATP2A1 | ATP2A2 | ENSP00000349595 | ENSP00000440045 | Sarcoplasmic/endoplasmic reticulum calcium ATPase 1; Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen (By similarity). Contributes to calcium sequestration involved in muscular excitation/contraction ; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIA subfamily. | Sarcoplasmic/endoplasmic reticulum calcium ATPase 2; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Isoform 2 is involved in the regulation of the contraction/relaxation cycle. Acts as a regulator of TNFSF11-mediated Ca(2+) signaling pathways via its interaction with TMEM64 which is critical for the TNFSF11-induced CREB1 activation and mitochondrial ROS generation necessary for proper osteoclast generation. Association between TMEM64 and SERCA2 in the ER leads to cytosolic C [...] | 0.935 |
ATP2A1 | ATP2A3 | ENSP00000349595 | ENSP00000353072 | Sarcoplasmic/endoplasmic reticulum calcium ATPase 1; Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen (By similarity). Contributes to calcium sequestration involved in muscular excitation/contraction ; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIA subfamily. | Sarcoplasmic/endoplasmic reticulum calcium ATPase 3; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the transport of calcium. Transports calcium ions from the cytosol into the sarcoplasmic/endoplasmic reticulum lumen. Contributes to calcium sequestration involved in muscular excitation/contraction. | 0.911 |
ATP2A1 | CANX | ENSP00000349595 | ENSP00000247461 | Sarcoplasmic/endoplasmic reticulum calcium ATPase 1; Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen (By similarity). Contributes to calcium sequestration involved in muscular excitation/contraction ; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIA subfamily. | Calnexin; Calcium-binding protein that interacts with newly synthesized glycoproteins in the endoplasmic reticulum. It may act in assisting protein assembly and/or in the retention within the ER of unassembled protein subunits. It seems to play a major role in the quality control apparatus of the ER by the retention of incorrectly folded proteins. Associated with partial T-cell antigen receptor complexes that escape the ER of immature thymocytes, it may function as a signaling complex regulating thymocyte maturation. Additionally it may play a role in receptor-mediated endocytosis at t [...] | 0.452 |
ATP2A1 | ITPR1 | ENSP00000349595 | ENSP00000306253 | Sarcoplasmic/endoplasmic reticulum calcium ATPase 1; Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen (By similarity). Contributes to calcium sequestration involved in muscular excitation/contraction ; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIA subfamily. | Inositol 1,4,5-trisphosphate receptor type 1; Intracellular channel that mediates calcium release from the endoplasmic reticulum following stimulation by inositol 1,4,5- trisphosphate. Involved in the regulation of epithelial secretion of electrolytes and fluid through the interaction with AHCYL1 (By similarity). Plays a role in ER stress-induced apoptosis. Cytoplasmic calcium released from the ER triggers apoptosis by the activation of CaM kinase II, eventually leading to the activation of downstream apoptosis pathways (By similarity). | 0.610 |
ATP2A1 | ITPR2 | ENSP00000349595 | ENSP00000370744 | Sarcoplasmic/endoplasmic reticulum calcium ATPase 1; Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen (By similarity). Contributes to calcium sequestration involved in muscular excitation/contraction ; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIA subfamily. | Inositol 1,4,5-trisphosphate receptor type 2; Receptor for inositol 1,4,5-trisphosphate, a second messenger that mediates the release of intracellular calcium. This release is regulated by cAMP both dependently and independently of PKA (By similarity). | 0.629 |
ATP2A1 | ITPR3 | ENSP00000349595 | ENSP00000363435 | Sarcoplasmic/endoplasmic reticulum calcium ATPase 1; Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen (By similarity). Contributes to calcium sequestration involved in muscular excitation/contraction ; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIA subfamily. | Inositol 1,4,5-trisphosphate receptor type 3; Receptor for inositol 1,4,5-trisphosphate, a second messenger that mediates the release of intracellular calcium. | 0.652 |
ATP2A1 | ORAI1 | ENSP00000349595 | ENSP00000482568 | Sarcoplasmic/endoplasmic reticulum calcium ATPase 1; Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen (By similarity). Contributes to calcium sequestration involved in muscular excitation/contraction ; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIA subfamily. | Calcium release-activated calcium channel protein 1; Ca(2+) release-activated Ca(2+) (CRAC) channel subunit which mediates Ca(2+) influx following depletion of intracellular Ca(2+) stores and channel activation by the Ca(2+) sensor, STIM1. CRAC channels are the main pathway for Ca(2+) influx in T-cells and promote the immune response to pathogens by activating the transcription factor NFAT. Belongs to the Orai family. | 0.421 |
ATP2A1 | RYR1 | ENSP00000349595 | ENSP00000352608 | Sarcoplasmic/endoplasmic reticulum calcium ATPase 1; Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen (By similarity). Contributes to calcium sequestration involved in muscular excitation/contraction ; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIA subfamily. | Ryanodine receptor 1; Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering muscle contraction following depolarization of T-tubules. Repeated very high-level exercise increases the open probability of the channel and leads to Ca(2+) leaking into the cytoplasm. Can also mediate the release of Ca(2+) from intracellular stores in neurons, and may thereby promote prolonged Ca(2+) signaling in the brain. Required for normal embryonic development of muscle fibers and skeletal muscle. Required for nor [...] | 0.942 |
ATP2A1 | RYR2 | ENSP00000349595 | ENSP00000355533 | Sarcoplasmic/endoplasmic reticulum calcium ATPase 1; Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen (By similarity). Contributes to calcium sequestration involved in muscular excitation/contraction ; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIA subfamily. | Ryanodine receptor 2; Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm and thereby plays a key role in triggering cardiac muscle contraction. Aberrant channel activation can lead to cardiac arrhythmia. In cardiac myocytes, calcium release is triggered by increased Ca(2+) levels due to activation of the L-type calcium channel CACNA1C. The calcium channel activity is modulated by formation of heterotetramers with RYR3. Required for cellular calcium ion homeostasis. Required for embryonic heart development. Belongs to the ryanodine rec [...] | 0.590 |
ATP2A1 | RYR3 | ENSP00000349595 | ENSP00000489262 | Sarcoplasmic/endoplasmic reticulum calcium ATPase 1; Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen (By similarity). Contributes to calcium sequestration involved in muscular excitation/contraction ; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIA subfamily. | Ryanodine receptor 3; Calcium channel that mediates the release of Ca(2+) from the sarcoplasmic reticulum into the cytoplasm in muscle and thereby plays a role in triggering muscle contraction. May regulate Ca(2+) release by other calcium channels. Calcium channel that mediates Ca(2+)-induced Ca(2+) release from the endoplasmic reticulum in non-muscle cells. Contributes to cellular calcium ion homeostasis (By similarity). Plays a role in cellular calcium signaling. | 0.619 |
ATP2A1 | STIM1 | ENSP00000349595 | ENSP00000478059 | Sarcoplasmic/endoplasmic reticulum calcium ATPase 1; Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen (By similarity). Contributes to calcium sequestration involved in muscular excitation/contraction ; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIA subfamily. | Stromal interaction molecule 1; Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Acts as Ca(2+) sensor in the endoplasmic reticulum via its EF-hand domain. Upon Ca(2+) depletion, translocates from the endoplasmic reticulum to the plasma membrane where it activates the Ca(2+) release- activated Ca(2+) (CRAC) channel subunit ORAI1. Involved in enamel formation. Activated following interaction with STIMATE, leading to promote STIM1 conformational switch. | 0.745 |
ATP2A1 | STIM2 | ENSP00000349595 | ENSP00000417569 | Sarcoplasmic/endoplasmic reticulum calcium ATPase 1; Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen (By similarity). Contributes to calcium sequestration involved in muscular excitation/contraction ; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIA subfamily. | Stromal interaction molecule 2; Plays a role in mediating store-operated Ca(2+) entry (SOCE), a Ca(2+) influx following depletion of intracellular Ca(2+) stores. Functions as a highly sensitive Ca(2+) sensor in the endoplasmic reticulum which activates both store-operated and store-independent Ca(2+)-influx. Regulates basal cytosolic and endoplasmic reticulum Ca(2+) concentrations. Upon mild variations of the endoplasmic reticulum Ca(2+) concentration, translocates from the endoplasmic reticulum to the plasma membrane where it probably activates the Ca(2+) release-activated Ca(2+) (CRA [...] | 0.469 |
ATP2A2 | ACTB | ENSP00000440045 | ENSP00000494750 | Sarcoplasmic/endoplasmic reticulum calcium ATPase 2; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Isoform 2 is involved in the regulation of the contraction/relaxation cycle. Acts as a regulator of TNFSF11-mediated Ca(2+) signaling pathways via its interaction with TMEM64 which is critical for the TNFSF11-induced CREB1 activation and mitochondrial ROS generation necessary for proper osteoclast generation. Association between TMEM64 and SERCA2 in the ER leads to cytosolic C [...] | Actin, cytoplasmic 1, N-terminally processed; Actin is a highly conserved protein that polymerizes to produce filaments that form cross-linked networks in the cytoplasm of cells. Actin exists in both monomeric (G-actin) and polymeric (F-actin) forms, both forms playing key functions, such as cell motility and contraction. In addition to their role in the cytoplasmic cytoskeleton, G- and F-actin also localize in the nucleus, and regulate gene transcription and motility and repair of damaged DNA. | 0.402 |
ATP2A2 | ATP2A1 | ENSP00000440045 | ENSP00000349595 | Sarcoplasmic/endoplasmic reticulum calcium ATPase 2; This magnesium-dependent enzyme catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen. Isoform 2 is involved in the regulation of the contraction/relaxation cycle. Acts as a regulator of TNFSF11-mediated Ca(2+) signaling pathways via its interaction with TMEM64 which is critical for the TNFSF11-induced CREB1 activation and mitochondrial ROS generation necessary for proper osteoclast generation. Association between TMEM64 and SERCA2 in the ER leads to cytosolic C [...] | Sarcoplasmic/endoplasmic reticulum calcium ATPase 1; Key regulator of striated muscle performance by acting as the major Ca(2+) ATPase responsible for the reuptake of cytosolic Ca(2+) into the sarcoplasmic reticulum. Catalyzes the hydrolysis of ATP coupled with the translocation of calcium from the cytosol to the sarcoplasmic reticulum lumen (By similarity). Contributes to calcium sequestration involved in muscular excitation/contraction ; Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IIA subfamily. | 0.935 |