STRINGSTRING
KAT2A KAT2A NAA50 NAA50 H4C6 H4C6 H3-3B H3-3B NAA25 NAA25 KAT2B KAT2B HAT1 HAT1 ESCO1 ESCO1 ATG3 ATG3 NAA15 NAA15 GLYATL1 GLYATL1 ESCO2 ESCO2 H3C13 H3C13 NAA20 NAA20 H3-5 H3-5 H3C12 H3C12 NAA35 NAA35 H3-4 H3-4 NAA40 NAA40 NAA60 NAA60 VWA1 VWA1 NAA10 NAA10 NAA30 NAA30 H4C7 H4C7 H3-2 H3-2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
KAT2AHistone acetyltransferase KAT2A; Protein lysine acyltransferase that can act as a acetyltransferase, glutaryltransferase or succinyltransferase, depending on the context. Acts as a histone lysine succinyltransferase: catalyzes succinylation of histone H3 on 'Lys-79' (H3K79succ), with a maximum frequency around the transcription start sites of genes. Succinylation of histones gives a specific tag for epigenetic transcription activation. Association with the 2-oxoglutarate dehydrogenase complex, which provides succinyl-CoA, is required for histone succinylation. In different complexes, f [...] (837 aa)
NAA50N-alpha-acetyltransferase 50; N-alpha-acetyltransferase that acetylates the N-terminus of proteins that retain their initiating methionine. Has a broad substrate specificity: able to acetylate the initiator methionine of most peptides, except for those with a proline in second position. Also displays N-epsilon-acetyltransferase activity by mediating acetylation of the side chain of specific lysines on proteins. Autoacetylates in vivo. The relevance of N-epsilon-acetyltransferase activity is however unclear: able to acetylate H4 in vitro, but this result has not been confirmed in vivo. [...] (169 aa)
H4C6Histone H4; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. (103 aa)
H3-3BHistone H3.3; Variant histone H3 which replaces conventional H3 in a wide range of nucleosomes in active genes. Constitutes the predominant form of histone H3 in non-dividing cells and is incorporated into chromatin independently of DNA synthesis. Deposited at sites of nucleosomal displacement throughout transcribed genes, suggesting that it represents an epigenetic imprint of transcriptionally active chromatin. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in [...] (136 aa)
NAA25N-alpha-acetyltransferase 25, NatB auxiliary subunit; Non-catalytic subunit of the NatB complex which catalyzes acetylation of the N-terminal methionine residues of peptides beginning with Met-Asp-Glu. May play a role in normal cell-cycle progression. Belongs to the MDM20/NAA25 family. (972 aa)
KAT2BHistone acetyltransferase KAT2B; Functions as a histone acetyltransferase (HAT) to promote transcriptional activation. Has significant histone acetyltransferase activity with core histones (H3 and H4), and also with nucleosome core particles. Also acetylates non- histone proteins, such as ACLY, PLK4, RRP9/U3-55K and TBX5. Inhibits cell-cycle progression and counteracts the mitogenic activity of the adenoviral oncoprotein E1A. Acts as a circadian transcriptional coactivator which enhances the activity of the circadian transcriptional activators: NPAS2-ARNTL/BMAL1 and CLOCK-ARNTL/BMAL1 h [...] (832 aa)
HAT1Histone acetyltransferase type B catalytic subunit; Acetylates soluble but not nucleosomal histone H4 at 'Lys-5' (H4K5ac) and 'Lys-12' (H4K12ac) and, to a lesser extent, acetylates histone H2A at 'Lys-5' (H2AK5ac). Has intrinsic substrate specificity that modifies lysine in recognition sequence GXGKXG. May be involved in nucleosome assembly during DNA replication and repair as part of the histone H3.1 and H3.3 complexes. May play a role in DNA repair in response to free radical damage. Belongs to the HAT1 family. (419 aa)
ESCO1N-acetyltransferase ESCO1; Acetyltransferase required for the establishment of sister chromatid cohesion. Couples the processes of cohesion and DNA replication to ensure that only sister chromatids become paired together. In contrast to the structural cohesins, the deposition and establishment factors are required only during S phase. Acts by mediating the acetylation of cohesin component SMC3. (840 aa)
ATG3Ubiquitin-like-conjugating enzyme ATG3; E2 conjugating enzyme required for the cytoplasm to vacuole transport (Cvt), autophagy, and mitochondrial homeostasis. Responsible for the E2-like covalent binding of phosphatidylethanolamine to the C- terminal Gly of ATG8-like proteins (GABARAP, GABARAPL1, GABARAPL2 or MAP1LC3A). The ATG12-ATG5 conjugate plays a role of an E3 and promotes the transfer of ATG8-like proteins from ATG3 to phosphatidylethanolamine (PE). This step is required for the membrane association of ATG8-like proteins. The formation of the ATG8- phosphatidylethanolamine conju [...] (314 aa)
NAA15N-alpha-acetyltransferase 15, NatA auxiliary subunit; Auxillary subunit of the N-terminal acetyltransferase A (NatA) complex which displays alpha (N-terminal) acetyltransferase activity. The NAT activity may be important for vascular, hematopoietic and neuronal growth and development. Required to control retinal neovascularization in adult ocular endothelial cells. In complex with XRCC6 and XRCC5 (Ku80), up-regulates transcription from the osteocalcin promoter. (866 aa)
GLYATL1Glycine N-acyltransferase-like protein 1; Acyltransferase which transfers an acyl group to the N- terminus of glutamine. Can use phenylacetyl-CoA as an acyl donor. Belongs to the glycine N-acyltransferase family. (333 aa)
ESCO2N-acetyltransferase ESCO2; Acetyltransferase required for the establishment of sister chromatid cohesion. Couples the processes of cohesion and DNA replication to ensure that only sister chromatids become paired together. In contrast to the structural cohesins, the deposition and establishment factors are required only during the S phase. Acetylates the cohesin component SMC3. (601 aa)
H3C13Histone H3.2; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. (136 aa)
NAA20N-alpha-acetyltransferase 20; Catalytic subunit of the NatB complex which catalyzes acetylation of the N-terminal methionine residues of peptides beginning with Met-Asp, Met-Glu, Met-Asn and Met-Gln. Proteins with cell cycle functions are overrepresented in the pool of NatB substrates. Required for maintaining the structure and function of actomyosin fibers and for proper cellular migration; Belongs to the acetyltransferase family. ARD1 subfamily. (178 aa)
H3-5Histone H3.3C; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. Hominid-specific H3.5/H3F3C preferentially colocalizes with euchromatin, and it is associated with actively transcribed genes. (135 aa)
H3C12Histone H3.1; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. (136 aa)
NAA35N-alpha-acetyltransferase 35, NatC auxiliary subunit; Auxillary component of the N-terminal acetyltransferase C (NatC) complex which catalyzes acetylation of N-terminal methionine residues. Involved in regulation of apoptosis and proliferation of smooth muscle cells. (725 aa)
H3-4Histone H3.1t; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. (136 aa)
NAA40N-alpha-acetyltransferase 40; N-alpha-acetyltransferase that specifically mediates the acetylation of the N-terminal residues of histones H4 and H2A. In contrast to other N-alpha- acetyltransferase, has a very specific selectivity for histones H4 and H2A N-terminus and specifically recognizes the 'Ser-Gly-Arg-Gly sequence'. Acts as a negative regulator of apoptosis. May play a role in hepatic lipid metabolism (By similarity). Belongs to the acetyltransferase family. NAA40 subfamily. (237 aa)
NAA60N-alpha-acetyltransferase 60; N-alpha-acetyltransferase that specifically mediates the acetylation of N-terminal residues of the transmembrane proteins, with a strong preference for N-termini facing the cytosol. Displays N-terminal acetyltransferase activity towards a range of N- terminal sequences including those starting with Met-Lys, Met-Val, Met- Ala and Met-Met. Required for normal chromosomal segregation during anaphase. May also show histone acetyltransferase activity; such results are however unclear in vivo and would require additional experimental evidences. Belongs to the ac [...] (249 aa)
VWA1Von Willebrand factor A domain-containing protein 1; Promotes matrix assembly. (445 aa)
NAA10N-alpha-acetyltransferase 10; Catalytic subunit of the N-terminal acetyltransferase A (NatA) complex which displays alpha (N-terminal) acetyltransferase activity. Acetylates amino termini that are devoid of initiator methionine. The alpha (N-terminal) acetyltransferase activity may be important for vascular, hematopoietic and neuronal growth and development. Without NAA15, displays epsilon (internal) acetyltransferase activity towards HIF1A, thereby promoting its degradation. Represses MYLK kinase activity by acetylation, and thus represses tumor cell migration. Acetylates, and stabili [...] (235 aa)
NAA30N-alpha-acetyltransferase 30; Catalytic subunit of the N-terminal acetyltransferase C (NatC) complex. Catalyzes acetylation of the N-terminal methionine residues of peptides beginning with Met-Leu-Ala and Met-Leu-Gly. Necessary for the lysosomal localization and function of ARL8B sugeesting that ARL8B is a NatC substrate. Belongs to the acetyltransferase family. MAK3 subfamily. (362 aa)
H4C7Histone H4-like protein type G; Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling (By similarity). (98 aa)
H3-2H3.2 histone. (136 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (28%) [HD]