node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
BHMT | BHMT2 | ENSP00000274353 | ENSP00000255192 | Betaine--homocysteine S-methyltransferase 1; Involved in the regulation of homocysteine metabolism. Converts betaine and homocysteine to dimethylglycine and methionine, respectively. This reaction is also required for the irreversible oxidation of choline. | S-methylmethionine--homocysteine S-methyltransferase BHMT2; Involved in the regulation of homocysteine metabolism. Converts homocysteine to methionine using S-methylmethionine (SMM) as a methyl donor. | 0.967 |
BHMT | DHFR | ENSP00000274353 | ENSP00000396308 | Betaine--homocysteine S-methyltransferase 1; Involved in the regulation of homocysteine metabolism. Converts betaine and homocysteine to dimethylglycine and methionine, respectively. This reaction is also required for the irreversible oxidation of choline. | Dihydrofolate reductase; Key enzyme in folate metabolism. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. Binds its own mRNA and that of DHFR2. | 0.638 |
BHMT | MTHFD1 | ENSP00000274353 | ENSP00000498336 | Betaine--homocysteine S-methyltransferase 1; Involved in the regulation of homocysteine metabolism. Converts betaine and homocysteine to dimethylglycine and methionine, respectively. This reaction is also required for the irreversible oxidation of choline. | C-1-tetrahydrofolate synthase, cytoplasmic, N-terminally processed; Methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1; In the N-terminal section; belongs to the tetrahydrofolate dehydrogenase/cyclohydrolase family. | 0.867 |
BHMT | MTHFD2 | ENSP00000274353 | ENSP00000377617 | Betaine--homocysteine S-methyltransferase 1; Involved in the regulation of homocysteine metabolism. Converts betaine and homocysteine to dimethylglycine and methionine, respectively. This reaction is also required for the irreversible oxidation of choline. | Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial; Although its dehydrogenase activity is NAD-specific, it can also utilize NADP at a reduced efficiency. Belongs to the tetrahydrofolate dehydrogenase/cyclohydrolase family. | 0.738 |
BHMT | MTHFR | ENSP00000274353 | ENSP00000365770 | Betaine--homocysteine S-methyltransferase 1; Involved in the regulation of homocysteine metabolism. Converts betaine and homocysteine to dimethylglycine and methionine, respectively. This reaction is also required for the irreversible oxidation of choline. | Methylenetetrahydrofolate reductase; Catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-substrate for homocysteine remethylation to methionine. | 0.978 |
BHMT | MTR | ENSP00000274353 | ENSP00000355536 | Betaine--homocysteine S-methyltransferase 1; Involved in the regulation of homocysteine metabolism. Converts betaine and homocysteine to dimethylglycine and methionine, respectively. This reaction is also required for the irreversible oxidation of choline. | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate (By similarity); Belongs to the vitamin-B12 dependent methionine synthase family. | 0.950 |
BHMT | MTRR | ENSP00000274353 | ENSP00000402510 | Betaine--homocysteine S-methyltransferase 1; Involved in the regulation of homocysteine metabolism. Converts betaine and homocysteine to dimethylglycine and methionine, respectively. This reaction is also required for the irreversible oxidation of choline. | Methionine synthase reductase; Involved in the reductive regeneration of cob(I)alamin (vitamin B12) cofactor required for the maintenance of methionine synthase in a functional state. Necessary for utilization of methylgroups from the folate cycle, thereby affecting transgenerational epigenetic inheritance. Folate pathway donates methyl groups necessary for cellular methylation and affects different pathways such as DNA methylation, possibly explaining the transgenerational epigenetic inheritance effects. | 0.816 |
BHMT | SHMT1 | ENSP00000274353 | ENSP00000318868 | Betaine--homocysteine S-methyltransferase 1; Involved in the regulation of homocysteine metabolism. Converts betaine and homocysteine to dimethylglycine and methionine, respectively. This reaction is also required for the irreversible oxidation of choline. | Serine hydroxymethyltransferase, cytosolic; Interconversion of serine and glycine. | 0.872 |
BHMT | SHMT2 | ENSP00000274353 | ENSP00000333667 | Betaine--homocysteine S-methyltransferase 1; Involved in the regulation of homocysteine metabolism. Converts betaine and homocysteine to dimethylglycine and methionine, respectively. This reaction is also required for the irreversible oxidation of choline. | Serine hydroxymethyltransferase, mitochondrial; Catalyzes the cleavage of serine to glycine accompanied with the production of 5,10-methylenetetrahydrofolate, an essential intermediate for purine biosynthesis. Serine provides the major source of folate one-carbon in cells by catalyzing the transfer of one carbon from serine to tetrahydrofolate. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway via its role in glycine and tetrahydrofolate metabolism: thymidylate biosynthesis is required to prevent uracil accumulation in mtDNA. Also required for mitochondrial tran [...] | 0.820 |
BHMT | TYMS | ENSP00000274353 | ENSP00000315644 | Betaine--homocysteine S-methyltransferase 1; Involved in the regulation of homocysteine metabolism. Converts betaine and homocysteine to dimethylglycine and methionine, respectively. This reaction is also required for the irreversible oxidation of choline. | Thymidylate synthase; Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. | 0.686 |
BHMT2 | BHMT | ENSP00000255192 | ENSP00000274353 | S-methylmethionine--homocysteine S-methyltransferase BHMT2; Involved in the regulation of homocysteine metabolism. Converts homocysteine to methionine using S-methylmethionine (SMM) as a methyl donor. | Betaine--homocysteine S-methyltransferase 1; Involved in the regulation of homocysteine metabolism. Converts betaine and homocysteine to dimethylglycine and methionine, respectively. This reaction is also required for the irreversible oxidation of choline. | 0.967 |
BHMT2 | MTHFD1 | ENSP00000255192 | ENSP00000498336 | S-methylmethionine--homocysteine S-methyltransferase BHMT2; Involved in the regulation of homocysteine metabolism. Converts homocysteine to methionine using S-methylmethionine (SMM) as a methyl donor. | C-1-tetrahydrofolate synthase, cytoplasmic, N-terminally processed; Methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1; In the N-terminal section; belongs to the tetrahydrofolate dehydrogenase/cyclohydrolase family. | 0.801 |
BHMT2 | MTHFD2 | ENSP00000255192 | ENSP00000377617 | S-methylmethionine--homocysteine S-methyltransferase BHMT2; Involved in the regulation of homocysteine metabolism. Converts homocysteine to methionine using S-methylmethionine (SMM) as a methyl donor. | Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial; Although its dehydrogenase activity is NAD-specific, it can also utilize NADP at a reduced efficiency. Belongs to the tetrahydrofolate dehydrogenase/cyclohydrolase family. | 0.731 |
BHMT2 | MTHFR | ENSP00000255192 | ENSP00000365770 | S-methylmethionine--homocysteine S-methyltransferase BHMT2; Involved in the regulation of homocysteine metabolism. Converts homocysteine to methionine using S-methylmethionine (SMM) as a methyl donor. | Methylenetetrahydrofolate reductase; Catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-substrate for homocysteine remethylation to methionine. | 0.952 |
BHMT2 | MTR | ENSP00000255192 | ENSP00000355536 | S-methylmethionine--homocysteine S-methyltransferase BHMT2; Involved in the regulation of homocysteine metabolism. Converts homocysteine to methionine using S-methylmethionine (SMM) as a methyl donor. | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate (By similarity); Belongs to the vitamin-B12 dependent methionine synthase family. | 0.950 |
BHMT2 | MTRR | ENSP00000255192 | ENSP00000402510 | S-methylmethionine--homocysteine S-methyltransferase BHMT2; Involved in the regulation of homocysteine metabolism. Converts homocysteine to methionine using S-methylmethionine (SMM) as a methyl donor. | Methionine synthase reductase; Involved in the reductive regeneration of cob(I)alamin (vitamin B12) cofactor required for the maintenance of methionine synthase in a functional state. Necessary for utilization of methylgroups from the folate cycle, thereby affecting transgenerational epigenetic inheritance. Folate pathway donates methyl groups necessary for cellular methylation and affects different pathways such as DNA methylation, possibly explaining the transgenerational epigenetic inheritance effects. | 0.812 |
BHMT2 | SHMT1 | ENSP00000255192 | ENSP00000318868 | S-methylmethionine--homocysteine S-methyltransferase BHMT2; Involved in the regulation of homocysteine metabolism. Converts homocysteine to methionine using S-methylmethionine (SMM) as a methyl donor. | Serine hydroxymethyltransferase, cytosolic; Interconversion of serine and glycine. | 0.786 |
BHMT2 | SHMT2 | ENSP00000255192 | ENSP00000333667 | S-methylmethionine--homocysteine S-methyltransferase BHMT2; Involved in the regulation of homocysteine metabolism. Converts homocysteine to methionine using S-methylmethionine (SMM) as a methyl donor. | Serine hydroxymethyltransferase, mitochondrial; Catalyzes the cleavage of serine to glycine accompanied with the production of 5,10-methylenetetrahydrofolate, an essential intermediate for purine biosynthesis. Serine provides the major source of folate one-carbon in cells by catalyzing the transfer of one carbon from serine to tetrahydrofolate. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway via its role in glycine and tetrahydrofolate metabolism: thymidylate biosynthesis is required to prevent uracil accumulation in mtDNA. Also required for mitochondrial tran [...] | 0.725 |
BHMT2 | TYMS | ENSP00000255192 | ENSP00000315644 | S-methylmethionine--homocysteine S-methyltransferase BHMT2; Involved in the regulation of homocysteine metabolism. Converts homocysteine to methionine using S-methylmethionine (SMM) as a methyl donor. | Thymidylate synthase; Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. | 0.531 |
DHFR | BHMT | ENSP00000396308 | ENSP00000274353 | Dihydrofolate reductase; Key enzyme in folate metabolism. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. Binds its own mRNA and that of DHFR2. | Betaine--homocysteine S-methyltransferase 1; Involved in the regulation of homocysteine metabolism. Converts betaine and homocysteine to dimethylglycine and methionine, respectively. This reaction is also required for the irreversible oxidation of choline. | 0.638 |