STRINGSTRING
LARS1 LARS1 TP53INP1 TP53INP1 CKB CKB CLPB CLPB GRPEL1 GRPEL1 BBOX1 BBOX1 CLPP CLPP HSPE1 HSPE1 CKM CKM LARS2 LARS2 PAX6 PAX6 RPLP0 RPLP0 CKMT2 CKMT2 YME1L1 YME1L1 CKMT1B CKMT1B ALB ALB HSPD1 HSPD1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
LARS1Leucine--tRNA ligase, cytoplasmic; Catalyzes the specific attachment of an amino acid to its cognate tRNA in a two step reaction: the amino acid (AA) is first activated by ATP to form AA-AMP and then transferred to the acceptor end of the tRNA. Exhibits a post-transfer editing activity to hydrolyze mischarged tRNAs. (1176 aa)
TP53INP1Tumor protein p53-inducible nuclear protein 1; Antiproliferative and proapoptotic protein involved in cell stress response which acts as a dual regulator of transcription and autophagy. Acts as a positive regulator of autophagy. In response to cellular stress or activation of autophagy, relocates to autophagosomes where it interacts with autophagosome-associated proteins GABARAP, GABARAPL1/L2, MAP1LC3A/B/C and regulates autophagy. Acts as an antioxidant and plays a major role in p53/TP53-driven oxidative stress response. Possesses both a p53/TP53-independent intracellular reactive oxyg [...] (240 aa)
CKBCreatine kinase B-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. (381 aa)
CLPBCaseinolytic peptidase B protein homolog; May function as a regulatory ATPase and be related to secretion/protein trafficking process. (707 aa)
GRPEL1GrpE protein homolog 1, mitochondrial; Essential component of the PAM complex, a complex required for the translocation of transit peptide-containing proteins from the inner membrane into the mitochondrial matrix in an ATP-dependent manner (By similarity). Seems to control the nucleotide-dependent binding of mitochondrial HSP70 to substrate proteins. Belongs to the GrpE family. (217 aa)
BBOX1Gamma-butyrobetaine dioxygenase; Catalyzes the formation of L-carnitine from gamma- butyrobetaine; Belongs to the gamma-BBH/TMLD family. (387 aa)
CLPPATP-dependent Clp protease proteolytic subunit, mitochondrial; Protease component of the Clp complex that cleaves peptides and various proteins in an ATP-dependent process. Has low peptidase activity in the absence of CLPX. The Clp complex can degrade CSN1S1, CSN2 and CSN3, as well as synthetic peptides (in vitro) and may be responsible for a fairly general and central housekeeping function rather than for the degradation of specific substrates. Cleaves PINK1 in the mitochondrion. (277 aa)
HSPE110 kDa heat shock protein, mitochondrial; Co-chaperonin implicated in mitochondrial protein import and macromolecular assembly. Together with Hsp60, facilitates the correct folding of imported proteins. May also prevent misfolding and promote the refolding and proper assembly of unfolded polypeptides generated under stress conditions in the mitochondrial matrix. The functional units of these chaperonins consist of heptameric rings of the large subunit Hsp60, which function as a back-to-back double ring. In a cyclic reaction, Hsp60 ring complexes bind one unfolded substrate protein per [...] (102 aa)
CKMCreatine kinase M-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. (381 aa)
LARS2Probable leucine--tRNA ligase, mitochondrial; leucyl-tRNA synthetase 2, mitochondrial. (903 aa)
PAX6Paired box protein Pax-6; Transcription factor with important functions in the development of the eye, nose, central nervous system and pancreas. Required for the differentiation of pancreatic islet alpha cells (By similarity). Competes with PAX4 in binding to a common element in the glucagon, insulin and somatostatin promoters. Regulates specification of the ventral neuron subtypes by establishing the correct progenitor domains (By similarity). Isoform 5a appears to function as a molecular switch that specifies target genes; Belongs to the paired homeobox family. (436 aa)
RPLP060S acidic ribosomal protein P0; Ribosomal protein P0 is the functional equivalent of E.coli protein L10. (317 aa)
CKMT2Creatine kinase S-type, mitochondrial; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa; Belongs to the ATP:guanido phosphotransferase family. (419 aa)
YME1L1ATP-dependent zinc metalloprotease YME1L1; ATP-dependent metalloprotease that catalyzes the degradation of folded and unfolded proteins with a suitable degron sequence in the mitochondrial intermembrane region. Plays an important role in regulating mitochondrial morphology and function by cleaving OPA1 at position S2, giving rise to a form of OPA1 that promotes maintenance of normal mitochondrial structure and mitochondrial protein metabolism. Ensures cell proliferation, maintains normal cristae morphology and complex I respiration activity, promotes antiapoptotic activity and protects [...] (773 aa)
CKMT1BCreatine kinase U-type, mitochondrial; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. (417 aa)
ALBSerum albumin; Serum albumin, the main protein of plasma, has a good binding capacity for water, Ca(2+), Na(+), K(+), fatty acids, hormones, bilirubin and drugs (Probable). Its main function is the regulation of the colloidal osmotic pressure of blood (Probable). Major zinc transporter in plasma, typically binds about 80% of all plasma zinc. Major calcium and magnesium transporter in plasma, binds approximately 45% of circulating calcium and magnesium in plasma (By similarity). Potentially has more than two calcium-binding sites and might additionally bind calcium in a non-specific man [...] (609 aa)
HSPD160 kDa heat shock protein, mitochondrial; Chaperonin implicated in mitochondrial protein import and macromolecular assembly. Together with Hsp10, facilitates the correct folding of imported proteins. May also prevent misfolding and promote the refolding and proper assembly of unfolded polypeptides generated under stress conditions in the mitochondrial matrix. The functional units of these chaperonins consist of heptameric rings of the large subunit Hsp60, which function as a back- to-back double ring. In a cyclic reaction, Hsp60 ring complexes bind one unfolded substrate protein per ri [...] (573 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (18%) [HD]