Your Input: | |||||
MYH6 | Myosin-6; Muscle contraction; Belongs to the TRAFAC class myosin-kinesin ATPase superfamily. Myosin family. (1939 aa) | ||||
ATP9B | Probable phospholipid-transporting ATPase IIB; ATPase phospholipid transporting 9B. (1147 aa) | ||||
RHOA | Transforming protein RhoA; Small GTPase which cycles between an active GTP-bound and an inactive GDP-bound state. Mainly associated with cytoskeleton organization, in active state binds to a variety of effector proteins to regulate cellular responses such cytoskeletal dynamics, cell migration and cell cycle. Regulates a signal transduction pathway linking plasma membrane receptors to the assembly of focal adhesions and actin stress fibers. Involved in a microtubule-dependent signal that is required for the myosin contractile ring formation during cell cycle cytokinesis. Plays an essent [...] (193 aa) | ||||
ANO6 | Anoctamin-6; Small-conductance calcium-activated nonselective cation (SCAN) channel which acts as a regulator of phospholipid scrambling in platelets and osteoblasts. Phospholipid scrambling results in surface exposure of phosphatidylserine which in platelets is essential to trigger the clotting system whereas in osteoblasts is essential for the deposition of hydroxyapatite during bone mineralization. Has calcium- dependent phospholipid scramblase activity; scrambles phosphatidylserine, phosphatidylcholine and galactosylceramide (By similarity). Can generate outwardly rectifying chlori [...] (931 aa) | ||||
PAX7 | Paired box protein Pax-7; Transcription factor playing a role in myogenesis through regulation of muscle precursor cells proliferation. (520 aa) | ||||
ATP9A | Probable phospholipid-transporting ATPase IIA; ATPase phospholipid transporting 9A. (1047 aa) | ||||
ATP11C | Phospholipid-transporting ATPase IG; Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. In the cell membrane of erythrocytes, it is required to maintain phosphatidylserine (PS) in the inner leaflet preventing its exposure on the surface. This asymmetric distribution is critical for the survival of erythrocytes in circulation since externalized PS is a phagocytic signal for [...] (1132 aa) | ||||
ATP11B | Probable phospholipid-transporting ATPase IF; Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation seems also to be implicated in vesicle formation and in uptake of lipid signaling molecules (Probable). Involved in regulation of sensitivity to cisplatin; may contribute to secretory vesicle transport of cisplatin from Golgi to plasma membrane. (1177 aa) | ||||
ATP10B | Probable phospholipid-transporting ATPase VB; Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation seems also to be implicated in vesicle formation and in uptake of lipid signaling molecules (Probable); Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IV subfamily. (1461 aa) | ||||
ANXA5 | Annexin A5; This protein is an anticoagulant protein that acts as an indirect inhibitor of the thromboplastin-specific complex, which is involved in the blood coagulation cascade. (320 aa) | ||||
ALB | Serum albumin; Serum albumin, the main protein of plasma, has a good binding capacity for water, Ca(2+), Na(+), K(+), fatty acids, hormones, bilirubin and drugs (Probable). Its main function is the regulation of the colloidal osmotic pressure of blood (Probable). Major zinc transporter in plasma, typically binds about 80% of all plasma zinc. Major calcium and magnesium transporter in plasma, binds approximately 45% of circulating calcium and magnesium in plasma (By similarity). Potentially has more than two calcium-binding sites and might additionally bind calcium in a non-specific man [...] (609 aa) | ||||
ATP8B4 | Probable phospholipid-transporting ATPase IM; Component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation seems also to be implicated in vesicle formation and in uptake of lipid signaling molecules (Probable). (1192 aa) | ||||
ATP10D | Probable phospholipid-transporting ATPase VD; Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation seems also to be implicated in vesicle formation and in uptake of lipid signaling molecules (Probable); Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IV subfamily. (1426 aa) | ||||
KRAS | GTPase KRas, N-terminally processed; Ras proteins bind GDP/GTP and possess intrinsic GTPase activity. Plays an important role in the regulation of cell proliferation. Plays a role in promoting oncogenic events by inducing transcriptional silencing of tumor suppressor genes (TSGs) in colorectal cancer (CRC) cells in a ZNF304-dependent manner. (189 aa) | ||||
MYOG | Myogenin; Acts as a transcriptional activator that promotes transcription of muscle-specific target genes and plays a role in muscle differentiation, cell cycle exit and muscle atrophy. Essential for the development of functional embryonic skeletal fiber muscle differentiation. However is dispensable for postnatal skeletal muscle growth; phosphorylation by CAMK2G inhibits its transcriptional activity in respons to muscle activity. Required for the recruitment of the FACT complex to muscle-specific promoter regions, thus promoting gene expression initiation. During terminal myoblast dif [...] (224 aa) | ||||
PLEK | Pleckstrin; Major protein kinase C substrate of platelets. (350 aa) | ||||
TMEM30A | Cell cycle control protein 50A; Accessory component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation seems also to be implicated in vesicle formation and in uptake of lipid signaling molecules. The beta subunit may assist in binding of the phospholipid substrate. Required for the proper folding, assembly and ER to Golgi exit of the ATP8A2:TMEM30A flippase complex. [...] (361 aa) | ||||
MYL2 | Myosin regulatory light chain 2, ventricular/cardiac muscle isoform; Contractile protein that plays a role in heart development and function (By similarity). Following phosphorylation, plays a role in cross-bridge cycling kinetics and cardiac muscle contraction by increasing myosin lever arm stiffness and promoting myosin head diffusion; as a consequence of the increase in maximum contraction force and calcium sensitivity of contraction force. These events altogether slow down myosin kinetics and prolong duty cycle resulting in accumulated myosins being cooperatively recruited to actin [...] (166 aa) | ||||
MYF5 | Myogenic factor 5; Transcriptional activator that promotes transcription of muscle-specific target genes and plays a role in muscle differentiation. Together with MYOG and MYOD1, co-occupies muscle- specific gene promoter core region during myogenesis. Induces fibroblasts to differentiate into myoblasts. Probable sequence specific DNA-binding protein. (255 aa) | ||||
PLEK2 | Pleckstrin-2; May help orchestrate cytoskeletal arrangement. Contribute to lamellipodia formation. (353 aa) | ||||
ATP8A2 | Phospholipid-transporting ATPase IB; Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation seems also to be implicated in vesicle formation and in uptake of lipid signaling molecules. Reconstituted to liposomes, the ATP8A2:TMEM30A flippase complex predomiminantly transports phosphatidylserine (PS) and to a lesser extent phosphatidylethanolamine (PE). [...] (1188 aa) | ||||
ATP8B2 | Phospholipid-transporting ATPase ID; Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation seems also to be implicated in vesicle formation and in uptake of lipid signaling molecules (Probable); Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IV subfamily. (1223 aa) | ||||
ATP8B1 | Phospholipid-transporting ATPase IC; Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation seems also to be implicated in vesicle formation and in uptake of lipid signaling molecules. May play a role in asymmetric distribution of phospholipids in the canicular membrane. May have a role in transport of bile acids into the canaliculus, uptake of bile a [...] (1251 aa) | ||||
AP3D1 | AP-3 complex subunit delta-1; Part of the AP-3 complex, an adaptor-related complex which is not clathrin-associated. The complex is associated with the Golgi region as well as more peripheral structures. It facilitates the budding of vesicles from the Golgi membrane and may be directly involved in trafficking to lysosomes. Involved in process of CD8+ T- cell and NK cell degranulation. In concert with the BLOC-1 complex, AP-3 is required to target cargos into vesicles assembled at cell bodies for delivery into neurites and nerve terminals (By similarity); Belongs to the adaptor complexe [...] (1215 aa) | ||||
MYH14 | Myosin-14; Cellular myosin that appears to play a role in cytokinesis, cell shape, and specialized functions such as secretion and capping. (2036 aa) | ||||
ANXA8 | Annexin A8. (365 aa) | ||||
TMEM30B | Cell cycle control protein 50B; Accessory component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation seems also to be implicated in vesicle formation and in uptake of lipid signaling molecules. The beta subunit may assist in binding of the phospholipid substrate (Probable). Can mediate the export of alpha subunits ATP8A1, ATP8B1, ATP8B2 and ATP8B4 from the ER to th [...] (351 aa) | ||||
ATP11A | Probable phospholipid-transporting ATPase IH; Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation seems also to be implicated in vesicle formation and in uptake of lipid signaling molecules (Probable). May be involved in the uptake of farnesyltransferase inhibitor drugs, such as lonafarnib. (1134 aa) | ||||
ATP10A | Probable phospholipid-transporting ATPase VA; Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation seems also to be implicated in vesicle formation and in uptake of lipid signaling molecules (Probable); Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IV subfamily. (1499 aa) | ||||
ATP8A1 | Phospholipid-transporting ATPase IA; Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation seems also to be implicated in vesicle formation and in uptake of lipid signaling molecules. In vitro, its ATPase activity is selectively and stereospecifically stimulated by phosphatidylserine (PS). The flippase complex ATP8A1:TMEM30A seems to play a role in r [...] (1164 aa) | ||||
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase; Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Participates in nuclear events including transcription, RNA transport, DNA replication and apoptosis. Nuclear functions are probably due to the nitrosylase activity that mediates cysteine S-nitrosylation of nuclear target proteins such as SIRT1, HDAC2 and PRKDC. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations throu [...] (335 aa) | ||||
ROCK1 | Rho-associated protein kinase 1; Protein kinase which is a key regulator of actin cytoskeleton and cell polarity. Involved in regulation of smooth muscle contraction, actin cytoskeleton organization, stress fiber and focal adhesion formation, neurite retraction, cell adhesion and motility via phosphorylation of DAPK3, GFAP, LIMK1, LIMK2, MYL9/MLC2, TPPP, PFN1 and PPP1R12A. Phosphorylates FHOD1 and acts synergistically with it to promote SRC-dependent non-apoptotic plasma membrane blebbing. Phosphorylates JIP3 and regulates the recruitment of JNK to JIP3 upon UVB-induced stress. Acts as [...] (1354 aa) |