node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ACO1 | FECH | ENSP00000309477 | ENSP00000498358 | Cytoplasmic aconitate hydratase; Iron sensor. Binds a 4Fe-4S cluster and functions as aconitase when cellular iron levels are high. Functions as mRNA binding protein that regulates uptake, sequestration and utilization of iron when cellular iron levels are low. Binds to iron-responsive elements (IRES) in target mRNA species when iron levels are low. Binding of a 4Fe-4S cluster precludes RNA binding. | Ferrochelatase, mitochondrial; Catalyzes the ferrous insertion into protoporphyrin IX; Belongs to the ferrochelatase family. | 0.823 |
ACO1 | FXN | ENSP00000309477 | ENSP00000419243 | Cytoplasmic aconitate hydratase; Iron sensor. Binds a 4Fe-4S cluster and functions as aconitase when cellular iron levels are high. Functions as mRNA binding protein that regulates uptake, sequestration and utilization of iron when cellular iron levels are low. Binds to iron-responsive elements (IRES) in target mRNA species when iron levels are low. Binding of a 4Fe-4S cluster precludes RNA binding. | Frataxin intermediate form; Promotes the biosynthesis of heme and assembly and repair of iron-sulfur clusters by delivering Fe(2+) to proteins involved in these pathways. May play a role in the protection against iron-catalyzed oxidative stress through its ability to catalyze the oxidation of Fe(2+) to Fe(3+); the oligomeric form but not the monomeric form has in vitro ferroxidase activity. May be able to store large amounts of iron in the form of a ferrihydrite mineral by oligomerization; however, the physiological relevance is unsure as reports are conflicting and the function has on [...] | 0.965 |
ACO1 | LYRM4 | ENSP00000309477 | ENSP00000443900 | Cytoplasmic aconitate hydratase; Iron sensor. Binds a 4Fe-4S cluster and functions as aconitase when cellular iron levels are high. Functions as mRNA binding protein that regulates uptake, sequestration and utilization of iron when cellular iron levels are low. Binds to iron-responsive elements (IRES) in target mRNA species when iron levels are low. Binding of a 4Fe-4S cluster precludes RNA binding. | LYR motif-containing protein 4; Required for nuclear and mitochondrial iron-sulfur protein biosynthesis; Belongs to the complex I LYR family. | 0.905 |
ACO1 | NFS1 | ENSP00000309477 | ENSP00000363205 | Cytoplasmic aconitate hydratase; Iron sensor. Binds a 4Fe-4S cluster and functions as aconitase when cellular iron levels are high. Functions as mRNA binding protein that regulates uptake, sequestration and utilization of iron when cellular iron levels are low. Binds to iron-responsive elements (IRES) in target mRNA species when iron levels are low. Binding of a 4Fe-4S cluster precludes RNA binding. | Cysteine desulfurase, mitochondrial; Catalyzes the removal of elemental sulfur from cysteine to produce alanine. It supplies the inorganic sulfur for iron-sulfur (Fe- S) clusters. May be involved in the biosynthesis of molybdenum cofactor; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. NifS/IscS subfamily. | 0.937 |
ACO1 | SLC11A2 | ENSP00000309477 | ENSP00000378364 | Cytoplasmic aconitate hydratase; Iron sensor. Binds a 4Fe-4S cluster and functions as aconitase when cellular iron levels are high. Functions as mRNA binding protein that regulates uptake, sequestration and utilization of iron when cellular iron levels are low. Binds to iron-responsive elements (IRES) in target mRNA species when iron levels are low. Binding of a 4Fe-4S cluster precludes RNA binding. | Natural resistance-associated macrophage protein 2; Important in metal transport, in particular iron. Can also transport manganese, cobalt, cadmium, nickel, vanadium and lead. Involved in apical iron uptake into duodenal enterocytes. Involved in iron transport from acidified endosomes into the cytoplasm of erythroid precursor cells. May play an important role in hepatic iron accumulation and tissue iron distribution. May serve to import iron into the mitochondria. Belongs to the NRAMP family. | 0.927 |
ACO1 | TFRC | ENSP00000309477 | ENSP00000376197 | Cytoplasmic aconitate hydratase; Iron sensor. Binds a 4Fe-4S cluster and functions as aconitase when cellular iron levels are high. Functions as mRNA binding protein that regulates uptake, sequestration and utilization of iron when cellular iron levels are low. Binds to iron-responsive elements (IRES) in target mRNA species when iron levels are low. Binding of a 4Fe-4S cluster precludes RNA binding. | Transferrin receptor protein 1, serum form; Cellular uptake of iron occurs via receptor-mediated endocytosis of ligand-occupied transferrin receptor into specialized endosomes. Endosomal acidification leads to iron release. The apotransferrin-receptor complex is then recycled to the cell surface with a return to neutral pH and the concomitant loss of affinity of apotransferrin for its receptor. Transferrin receptor is necessary for development of erythrocytes and the nervous system (By similarity). A second ligand, the heditary hemochromatosis protein HFE, competes for binding with tra [...] | 0.888 |
FECH | ACO1 | ENSP00000498358 | ENSP00000309477 | Ferrochelatase, mitochondrial; Catalyzes the ferrous insertion into protoporphyrin IX; Belongs to the ferrochelatase family. | Cytoplasmic aconitate hydratase; Iron sensor. Binds a 4Fe-4S cluster and functions as aconitase when cellular iron levels are high. Functions as mRNA binding protein that regulates uptake, sequestration and utilization of iron when cellular iron levels are low. Binds to iron-responsive elements (IRES) in target mRNA species when iron levels are low. Binding of a 4Fe-4S cluster precludes RNA binding. | 0.823 |
FECH | FXN | ENSP00000498358 | ENSP00000419243 | Ferrochelatase, mitochondrial; Catalyzes the ferrous insertion into protoporphyrin IX; Belongs to the ferrochelatase family. | Frataxin intermediate form; Promotes the biosynthesis of heme and assembly and repair of iron-sulfur clusters by delivering Fe(2+) to proteins involved in these pathways. May play a role in the protection against iron-catalyzed oxidative stress through its ability to catalyze the oxidation of Fe(2+) to Fe(3+); the oligomeric form but not the monomeric form has in vitro ferroxidase activity. May be able to store large amounts of iron in the form of a ferrihydrite mineral by oligomerization; however, the physiological relevance is unsure as reports are conflicting and the function has on [...] | 0.996 |
FECH | LYRM4 | ENSP00000498358 | ENSP00000443900 | Ferrochelatase, mitochondrial; Catalyzes the ferrous insertion into protoporphyrin IX; Belongs to the ferrochelatase family. | LYR motif-containing protein 4; Required for nuclear and mitochondrial iron-sulfur protein biosynthesis; Belongs to the complex I LYR family. | 0.718 |
FECH | NFS1 | ENSP00000498358 | ENSP00000363205 | Ferrochelatase, mitochondrial; Catalyzes the ferrous insertion into protoporphyrin IX; Belongs to the ferrochelatase family. | Cysteine desulfurase, mitochondrial; Catalyzes the removal of elemental sulfur from cysteine to produce alanine. It supplies the inorganic sulfur for iron-sulfur (Fe- S) clusters. May be involved in the biosynthesis of molybdenum cofactor; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. NifS/IscS subfamily. | 0.741 |
FECH | SLC11A2 | ENSP00000498358 | ENSP00000378364 | Ferrochelatase, mitochondrial; Catalyzes the ferrous insertion into protoporphyrin IX; Belongs to the ferrochelatase family. | Natural resistance-associated macrophage protein 2; Important in metal transport, in particular iron. Can also transport manganese, cobalt, cadmium, nickel, vanadium and lead. Involved in apical iron uptake into duodenal enterocytes. Involved in iron transport from acidified endosomes into the cytoplasm of erythroid precursor cells. May play an important role in hepatic iron accumulation and tissue iron distribution. May serve to import iron into the mitochondria. Belongs to the NRAMP family. | 0.718 |
FECH | TFRC | ENSP00000498358 | ENSP00000376197 | Ferrochelatase, mitochondrial; Catalyzes the ferrous insertion into protoporphyrin IX; Belongs to the ferrochelatase family. | Transferrin receptor protein 1, serum form; Cellular uptake of iron occurs via receptor-mediated endocytosis of ligand-occupied transferrin receptor into specialized endosomes. Endosomal acidification leads to iron release. The apotransferrin-receptor complex is then recycled to the cell surface with a return to neutral pH and the concomitant loss of affinity of apotransferrin for its receptor. Transferrin receptor is necessary for development of erythrocytes and the nervous system (By similarity). A second ligand, the heditary hemochromatosis protein HFE, competes for binding with tra [...] | 0.567 |
FXN | ACO1 | ENSP00000419243 | ENSP00000309477 | Frataxin intermediate form; Promotes the biosynthesis of heme and assembly and repair of iron-sulfur clusters by delivering Fe(2+) to proteins involved in these pathways. May play a role in the protection against iron-catalyzed oxidative stress through its ability to catalyze the oxidation of Fe(2+) to Fe(3+); the oligomeric form but not the monomeric form has in vitro ferroxidase activity. May be able to store large amounts of iron in the form of a ferrihydrite mineral by oligomerization; however, the physiological relevance is unsure as reports are conflicting and the function has on [...] | Cytoplasmic aconitate hydratase; Iron sensor. Binds a 4Fe-4S cluster and functions as aconitase when cellular iron levels are high. Functions as mRNA binding protein that regulates uptake, sequestration and utilization of iron when cellular iron levels are low. Binds to iron-responsive elements (IRES) in target mRNA species when iron levels are low. Binding of a 4Fe-4S cluster precludes RNA binding. | 0.965 |
FXN | FECH | ENSP00000419243 | ENSP00000498358 | Frataxin intermediate form; Promotes the biosynthesis of heme and assembly and repair of iron-sulfur clusters by delivering Fe(2+) to proteins involved in these pathways. May play a role in the protection against iron-catalyzed oxidative stress through its ability to catalyze the oxidation of Fe(2+) to Fe(3+); the oligomeric form but not the monomeric form has in vitro ferroxidase activity. May be able to store large amounts of iron in the form of a ferrihydrite mineral by oligomerization; however, the physiological relevance is unsure as reports are conflicting and the function has on [...] | Ferrochelatase, mitochondrial; Catalyzes the ferrous insertion into protoporphyrin IX; Belongs to the ferrochelatase family. | 0.996 |
FXN | LYRM4 | ENSP00000419243 | ENSP00000443900 | Frataxin intermediate form; Promotes the biosynthesis of heme and assembly and repair of iron-sulfur clusters by delivering Fe(2+) to proteins involved in these pathways. May play a role in the protection against iron-catalyzed oxidative stress through its ability to catalyze the oxidation of Fe(2+) to Fe(3+); the oligomeric form but not the monomeric form has in vitro ferroxidase activity. May be able to store large amounts of iron in the form of a ferrihydrite mineral by oligomerization; however, the physiological relevance is unsure as reports are conflicting and the function has on [...] | LYR motif-containing protein 4; Required for nuclear and mitochondrial iron-sulfur protein biosynthesis; Belongs to the complex I LYR family. | 0.999 |
FXN | NFS1 | ENSP00000419243 | ENSP00000363205 | Frataxin intermediate form; Promotes the biosynthesis of heme and assembly and repair of iron-sulfur clusters by delivering Fe(2+) to proteins involved in these pathways. May play a role in the protection against iron-catalyzed oxidative stress through its ability to catalyze the oxidation of Fe(2+) to Fe(3+); the oligomeric form but not the monomeric form has in vitro ferroxidase activity. May be able to store large amounts of iron in the form of a ferrihydrite mineral by oligomerization; however, the physiological relevance is unsure as reports are conflicting and the function has on [...] | Cysteine desulfurase, mitochondrial; Catalyzes the removal of elemental sulfur from cysteine to produce alanine. It supplies the inorganic sulfur for iron-sulfur (Fe- S) clusters. May be involved in the biosynthesis of molybdenum cofactor; Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. NifS/IscS subfamily. | 0.999 |
FXN | SLC11A2 | ENSP00000419243 | ENSP00000378364 | Frataxin intermediate form; Promotes the biosynthesis of heme and assembly and repair of iron-sulfur clusters by delivering Fe(2+) to proteins involved in these pathways. May play a role in the protection against iron-catalyzed oxidative stress through its ability to catalyze the oxidation of Fe(2+) to Fe(3+); the oligomeric form but not the monomeric form has in vitro ferroxidase activity. May be able to store large amounts of iron in the form of a ferrihydrite mineral by oligomerization; however, the physiological relevance is unsure as reports are conflicting and the function has on [...] | Natural resistance-associated macrophage protein 2; Important in metal transport, in particular iron. Can also transport manganese, cobalt, cadmium, nickel, vanadium and lead. Involved in apical iron uptake into duodenal enterocytes. Involved in iron transport from acidified endosomes into the cytoplasm of erythroid precursor cells. May play an important role in hepatic iron accumulation and tissue iron distribution. May serve to import iron into the mitochondria. Belongs to the NRAMP family. | 0.637 |
FXN | TFRC | ENSP00000419243 | ENSP00000376197 | Frataxin intermediate form; Promotes the biosynthesis of heme and assembly and repair of iron-sulfur clusters by delivering Fe(2+) to proteins involved in these pathways. May play a role in the protection against iron-catalyzed oxidative stress through its ability to catalyze the oxidation of Fe(2+) to Fe(3+); the oligomeric form but not the monomeric form has in vitro ferroxidase activity. May be able to store large amounts of iron in the form of a ferrihydrite mineral by oligomerization; however, the physiological relevance is unsure as reports are conflicting and the function has on [...] | Transferrin receptor protein 1, serum form; Cellular uptake of iron occurs via receptor-mediated endocytosis of ligand-occupied transferrin receptor into specialized endosomes. Endosomal acidification leads to iron release. The apotransferrin-receptor complex is then recycled to the cell surface with a return to neutral pH and the concomitant loss of affinity of apotransferrin for its receptor. Transferrin receptor is necessary for development of erythrocytes and the nervous system (By similarity). A second ligand, the heditary hemochromatosis protein HFE, competes for binding with tra [...] | 0.547 |
LYRM4 | ACO1 | ENSP00000443900 | ENSP00000309477 | LYR motif-containing protein 4; Required for nuclear and mitochondrial iron-sulfur protein biosynthesis; Belongs to the complex I LYR family. | Cytoplasmic aconitate hydratase; Iron sensor. Binds a 4Fe-4S cluster and functions as aconitase when cellular iron levels are high. Functions as mRNA binding protein that regulates uptake, sequestration and utilization of iron when cellular iron levels are low. Binds to iron-responsive elements (IRES) in target mRNA species when iron levels are low. Binding of a 4Fe-4S cluster precludes RNA binding. | 0.905 |
LYRM4 | FECH | ENSP00000443900 | ENSP00000498358 | LYR motif-containing protein 4; Required for nuclear and mitochondrial iron-sulfur protein biosynthesis; Belongs to the complex I LYR family. | Ferrochelatase, mitochondrial; Catalyzes the ferrous insertion into protoporphyrin IX; Belongs to the ferrochelatase family. | 0.718 |