STRINGSTRING
CEPT1 CEPT1 PIK3CG PIK3CG MFN2 MFN2 GK GK PISD PISD GCG GCG SPTLC3 SPTLC3 INS INS TLCD3B TLCD3B PIK3CD PIK3CD PIP4K2A PIP4K2A GK2 GK2 SLC2A4 SLC2A4 LCLAT1 LCLAT1 PTDSS2 PTDSS2 INSR INSR CHKA CHKA PIK3CA PIK3CA SPTLC1 SPTLC1 PEMT PEMT CERK CERK SPTLC2 SPTLC2 CDIPT CDIPT PIK3CB PIK3CB TAZ TAZ AKT1 AKT1 PCYT2 PCYT2 PTDSS1 PTDSS1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
CEPT1Choline/ethanolaminephosphotransferase 1; Catalyzes both phosphatidylcholine and phosphatidylethanolamine biosynthesis from CDP-choline and CDP- ethanolamine, respectively. Involved in protein-dependent process of phospholipid transport to distribute phosphatidyl choline to the lumenal surface. Has a higher cholinephosphotransferase activity than ethanolaminephosphotransferase activity. (416 aa)
PIK3CGPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform; Phosphoinositide-3-kinase (PI3K) that phosphorylates PtdIns(4,5)P2 (Phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Links G-protein coupled receptor activation to PIP3 production. Involved in immune, inflammatory and allergic responses. Modulates [...] (1102 aa)
MFN2Mitofusin-2; Mitochondrial outer membrane GTPase that mediates mitochondrial clustering and fusion. Mitochondria are highly dynamic organelles, and their morphology is determined by the equilibrium between mitochondrial fusion and fission events. Overexpression induces the formation of mitochondrial networks. Membrane clustering requires GTPase activity and may involve a major rearrangement of the coiled coil domains (Probable). Plays a central role in mitochondrial metabolism and may be associated with obesity and/or apoptosis processes (By similarity). Plays an important role in the [...] (757 aa)
GKGlycerol kinase; Key enzyme in the regulation of glycerol uptake and metabolism; Belongs to the FGGY kinase family. (559 aa)
PISDPhosphatidylserine decarboxylase proenzyme, mitochondrial; Catalyzes the formation of phosphatidylethanolamine (PtdEtn) from phosphatidylserine (PtdSer). Plays a central role in phospholipid metabolism and in the interorganelle trafficking of phosphatidylserine. Belongs to the phosphatidylserine decarboxylase family. PSD-B subfamily. Eukaryotic type I sub-subfamily. (409 aa)
GCGGlicentin-related polypeptide; Glucagon plays a key role in glucose metabolism and homeostasis. Regulates blood glucose by increasing gluconeogenesis and decreasing glycolysis. A counterregulatory hormone of insulin, raises plasma glucose levels in response to insulin-induced hypoglycemia. Plays an important role in initiating and maintaining hyperglycemic conditions in diabetes. GLP-2 stimulates intestinal growth and up-regulates villus height in the small intestine, concomitant with increased crypt cell proliferation and decreased enterocyte apoptosis. The gastrointestinal tract, fro [...] (180 aa)
SPTLC3Serine palmitoyltransferase 3; Serine palmitoyltransferase (SPT). The heterodimer formed with LCB1/SPTLC1 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. SPT complexes containing SPTLC3 generate shorter chain sphingoid bases compared to complexes containing SPTLC2. The SPTLC1- SPTLC3-SPTSSA isozyme uses C12-CoA, C14-CoA and C16-CoA as substrates, with a slight preference for C14-CoA. On the other hand, the SPTLC1- SPTLC3-SPTSSB has the ability to use a broader range of acyl-CoAs without apparent preference. (552 aa)
INSInsulin A chain; Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. (110 aa)
TLCD3BCeramide synthase; Involved in ceramide synthesis. (274 aa)
PIK3CDPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoform; Phosphoinositide-3-kinase (PI3K) that phosphorylates PtdIns(4,5)P2 (Phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Mediates immune responses. Plays a role in B-cell development, proliferation, migration, and function. Required for B-cell recepto [...] (1044 aa)
PIP4K2APhosphatidylinositol 5-phosphate 4-kinase type-2 alpha; Catalyzes the phosphorylation of phosphatidylinositol 5- phosphate (PtdIns5P) on the fourth hydroxyl of the myo-inositol ring, to form phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2). May exert its function by regulating the levels of PtdIns5P, which functions in the cytosol by increasing AKT activity and in the nucleus signals through ING2. May regulate the pool of cytosolic PtdIns5P in response to the activation of tyrosine phosphorylation. May negatively regulate insulin-stimulated glucose uptake by lowering the levels of [...] (406 aa)
GK2Glycerol kinase 2; Key enzyme in the regulation of glycerol uptake and metabolism; Belongs to the FGGY kinase family. (553 aa)
SLC2A4Solute carrier family 2, facilitated glucose transporter member 4; Insulin-regulated facilitative glucose transporter, which plays a key role in removal of glucose from circulation. Response to insulin is regulated by its intracellular localization: in the absence of insulin, it is efficiently retained intracellularly within storage compartments in muscle and fat cells. Upon insulin stimulation, translocates from these compartments to the cell surface where it transports glucose from the extracellular milieu into the cell. (509 aa)
LCLAT1Lysocardiolipin acyltransferase 1; Exhibits acyl-CoA:lysocardiolipin acyltransferase (ALCAT) activity; catalyzes the reacylation of lyso-cardiolipin to cardiolipin (CL), a key step in CL remodeling (By similarity). Recognizes both monolysocardiolipin and dilysocardiolipin as substrates with a preference for linoleoyl-CoA and oleoyl-CoA as acyl donors (By similarity). Also exhibits 1-acyl-sn-glycerol-3-phosphate acyltransferase activity (AGPAT) activity; converts 1-acyl-sn-glycerol- 3- phosphate (lysophosphatidic acid or LPA) into 1,2-diacyl-sn- glycerol-3- phosphate (phosphatidic acid [...] (414 aa)
PTDSS2Phosphatidylserine synthase 2; Catalyzes a base-exchange reaction in which the polar head group of phosphatidylethanolamine (PE) or phosphatidylcholine (PC) is replaced by L-serine. PTDSS2 is specific for phosphatatidylethanolamine and does not act on phosphatidylcholine; Belongs to the phosphatidyl serine synthase family. (487 aa)
INSRInsulin receptor subunit alpha; Receptor tyrosine kinase which mediates the pleiotropic actions of insulin. Binding of insulin leads to phosphorylation of several intracellular substrates, including, insulin receptor substrates (IRS1, 2, 3, 4), SHC, GAB1, CBL and other signaling intermediates. Each of these phosphorylated proteins serve as docking proteins for other signaling proteins that contain Src-homology-2 domains (SH2 domain) that specifically recognize different phosphotyrosine residues, including the p85 regulatory subunit of PI3K and SHP2. Phosphorylation of IRSs proteins lea [...] (1382 aa)
CHKACholine kinase alpha; Has a key role in phospholipid biosynthesis and may contribute to tumor cell growth. Catalyzes the first step in phosphatidylcholine biosynthesis. Contributes to phosphatidylethanolamine biosynthesis. Phosphorylates choline and ethanolamine. Has higher activity with choline. (457 aa)
PIK3CAPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform; Phosphoinositide-3-kinase (PI3K) that phosphorylates PtdIns (Phosphatidylinositol), PtdIns4P (Phosphatidylinositol 4-phosphate) and PtdIns(4,5)P2 (Phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Participates in cellular signaling in response to v [...] (1068 aa)
SPTLC1Serine palmitoyltransferase 1; Serine palmitoyltransferase (SPT). The heterodimer formed with SPTLC2 or SPTLC3 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1-SPTLC3-SPTSSA isozyme uses both C14-CoA and C16-CoA as substrates, with a slight preference for C14-CoA. The SPTLC1-SPTLC2-SPTSSB complex shows a strong preference for C18-CoA substrate, while the SPTLC1-SPTLC3-SPTSSB isozyme displays an ability to [...] (473 aa)
PEMTPhosphatidylethanolamine N-methyltransferase; Catalyzes the three sequential steps of the methylation pathway of phosphatidylcholine biosynthesis, the SAM-dependent methylation of phosphatidylethanolamine (PE) to phosphatidylmonomethylethanolamine (PMME), PMME to phosphatidyldimethylethanolamine (PDME), and PDME to phosphatidylcholine (PC). (236 aa)
CERKCeramide kinase; Catalyzes specifically the phosphorylation of ceramide to form ceramide 1-phosphate. Acts efficiently on natural and analog ceramides (C6, C8, C16 ceramides, and C8-dihydroceramide), to a lesser extent on C2- ceramide and C6-dihydroceramide, but not on other lipids, such as various sphingosines. Shows a greater preference for D-erythro isomer of ceramides. Binds phosphoinositides. (537 aa)
SPTLC2Serine palmitoyltransferase 2; Serine palmitoyltransferase (SPT). The heterodimer formed with LCB1/SPTLC1 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1-SPTLC2-SPTSSB complex displays a preference for C18-CoA substrate. Plays an important role in de novo sphyngolipid biosynthesis which is crucial for adipogenesis (By similarity). Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. (562 aa)
CDIPTCDP-diacylglycerol--inositol 3-phosphatidyltransferase; Catalyzes the biosynthesis of phosphatidylinositol (PtdIns) as well as PtdIns:inositol exchange reaction. May thus act to reduce an excessive cellular PtdIns content. The exchange activity is due to the reverse reaction of PtdIns synthase and is dependent on CMP, which is tightly bound to the enzyme. (213 aa)
PIK3CBPhosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoform; Phosphoinositide-3-kinase (PI3K) that phosphorylates PtdIns (Phosphatidylinositol), PtdIns4P (Phosphatidylinositol 4-phosphate) and PtdIns(4,5)P2 (Phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Involved in the activation of AKT1 upon stimulation [...] (1070 aa)
TAZTafazzin; Some isoforms may be involved in cardiolipin (CL) metabolism. Belongs to the taffazin family. (292 aa)
AKT1RAC-alpha serine/threonine-protein kinase; AKT1 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of the [...] (480 aa)
PCYT2Ethanolamine-phosphate cytidylyltransferase; Plays an important role in the biosynthesis of the phospholipid phosphatidylethanolamine. Catalyzes the formation of CDP- ethanolamine. (407 aa)
PTDSS1Phosphatidylserine synthase 1; Catalyzes a base-exchange reaction in which the polar head group of phosphatidylethanolamine (PE) or phosphatidylcholine (PC) is replaced by L-serine. In membranes, PTDSS1 catalyzes mainly the conversion of phosphatidylcholine. Also converts, in vitro and to a lesser extent, phosphatidylethanolamine. (473 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (14%) [HD]