node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
ADH1B | ADH4 | ENSP00000306606 | ENSP00000424630 | All-trans-retinol dehydrogenase [NAD(+)] ADH1B; Catalyzes the NAD-dependent oxidation of all-trans-retinol and its derivatives such as all-trans-4-hydroxyretinol and may participate to retinoid metabolism. In vitro can also catalyzes the NADH-dependent reduction of all-trans- retinal and its derivatives such as all-trans-4-oxoretinal. Catalyzes in the oxidative direction with higher efficiency. Has the same affinity for all-trans-4-hydroxyretinol and all-trans-4-oxoretinal. | All-trans-retinol dehydrogenase [NAD(+)] ADH4; Catalyzes the NAD-dependent oxidation of either all-trans- retinol or 9-cis-retinol. Also oxidizes long chain omega-hydroxy fatty acids, such as 20-HETE, producing both the intermediate aldehyde, 20-oxoarachidonate and the end product, a dicarboxylic acid, (5Z,8Z,11Z,14Z)-eicosatetraenedioate. Also catalyzes the reduction of benzoquinones. | 0.568 |
ADH4 | ADH1B | ENSP00000424630 | ENSP00000306606 | All-trans-retinol dehydrogenase [NAD(+)] ADH4; Catalyzes the NAD-dependent oxidation of either all-trans- retinol or 9-cis-retinol. Also oxidizes long chain omega-hydroxy fatty acids, such as 20-HETE, producing both the intermediate aldehyde, 20-oxoarachidonate and the end product, a dicarboxylic acid, (5Z,8Z,11Z,14Z)-eicosatetraenedioate. Also catalyzes the reduction of benzoquinones. | All-trans-retinol dehydrogenase [NAD(+)] ADH1B; Catalyzes the NAD-dependent oxidation of all-trans-retinol and its derivatives such as all-trans-4-hydroxyretinol and may participate to retinoid metabolism. In vitro can also catalyzes the NADH-dependent reduction of all-trans- retinal and its derivatives such as all-trans-4-oxoretinal. Catalyzes in the oxidative direction with higher efficiency. Has the same affinity for all-trans-4-hydroxyretinol and all-trans-4-oxoretinal. | 0.568 |
KDSR | SPTLC1 | ENSP00000494352 | ENSP00000262554 | 3-ketodihydrosphingosine reductase; Catalyzes the reduction of 3-ketodihydrosphingosine (KDS) to dihydrosphingosine (DHS); Belongs to the short-chain dehydrogenases/reductases (SDR) family. | Serine palmitoyltransferase 1; Serine palmitoyltransferase (SPT). The heterodimer formed with SPTLC2 or SPTLC3 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1-SPTLC3-SPTSSA isozyme uses both C14-CoA and C16-CoA as substrates, with a slight preference for C14-CoA. The SPTLC1-SPTLC2-SPTSSB complex shows a strong preference for C18-CoA substrate, while the SPTLC1-SPTLC3-SPTSSB isozyme displays an ability to [...] | 0.996 |
KDSR | SPTLC2 | ENSP00000494352 | ENSP00000216484 | 3-ketodihydrosphingosine reductase; Catalyzes the reduction of 3-ketodihydrosphingosine (KDS) to dihydrosphingosine (DHS); Belongs to the short-chain dehydrogenases/reductases (SDR) family. | Serine palmitoyltransferase 2; Serine palmitoyltransferase (SPT). The heterodimer formed with LCB1/SPTLC1 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1-SPTLC2-SPTSSB complex displays a preference for C18-CoA substrate. Plays an important role in de novo sphyngolipid biosynthesis which is crucial for adipogenesis (By similarity). Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. | 0.990 |
KDSR | SPTLC3 | ENSP00000494352 | ENSP00000381968 | 3-ketodihydrosphingosine reductase; Catalyzes the reduction of 3-ketodihydrosphingosine (KDS) to dihydrosphingosine (DHS); Belongs to the short-chain dehydrogenases/reductases (SDR) family. | Serine palmitoyltransferase 3; Serine palmitoyltransferase (SPT). The heterodimer formed with LCB1/SPTLC1 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. SPT complexes containing SPTLC3 generate shorter chain sphingoid bases compared to complexes containing SPTLC2. The SPTLC1- SPTLC3-SPTSSA isozyme uses C12-CoA, C14-CoA and C16-CoA as substrates, with a slight preference for C14-CoA. On the other hand, the SPTLC1- SPTLC3-SPTSSB has the ability to use a broader range of acyl-CoAs without apparent preference. | 0.989 |
KDSR | SPTSSA | ENSP00000494352 | ENSP00000298130 | 3-ketodihydrosphingosine reductase; Catalyzes the reduction of 3-ketodihydrosphingosine (KDS) to dihydrosphingosine (DHS); Belongs to the short-chain dehydrogenases/reductases (SDR) family. | Serine palmitoyltransferase small subunit A; Stimulates the activity of serine palmitoyltransferase (SPT). The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1- SPTLC3-SPTSSA isozyme uses both C14-CoA and C16-CoA as substrates, with a slight preference for C14-CoA. Plays a role in MBOAT7 location to mitochondria-associated membranes (MAMs), may me involved in fatty acid remodeling phosphatidylinositol (PI). | 0.564 |
ORM1 | ORM2 | ENSP00000259396 | ENSP00000394936 | Alpha-1-acid glycoprotein 1; Functions as transport protein in the blood stream. Binds various ligands in the interior of its beta-barrel domain. Also binds synthetic drugs and influences their distribution and availability in the body. Appears to function in modulating the activity of the immune system during the acute-phase reaction; Belongs to the calycin superfamily. Lipocalin family. | Alpha-1-acid glycoprotein 2; Functions as transport protein in the blood stream. Binds various hydrophobic ligands in the interior of its beta-barrel domain. Also binds synthetic drugs and influences their distribution and availability. Appears to function in modulating the activity of the immune system during the acute-phase reaction. | 0.999 |
ORM1 | ORMDL3 | ENSP00000259396 | ENSP00000377724 | Alpha-1-acid glycoprotein 1; Functions as transport protein in the blood stream. Binds various ligands in the interior of its beta-barrel domain. Also binds synthetic drugs and influences their distribution and availability in the body. Appears to function in modulating the activity of the immune system during the acute-phase reaction; Belongs to the calycin superfamily. Lipocalin family. | ORM1-like protein 3; Negative regulator of sphingolipid synthesis. May indirectly regulate endoplasmic reticulum-mediated Ca(+2) signaling. Belongs to the ORM family. | 0.887 |
ORM1 | SPTLC1 | ENSP00000259396 | ENSP00000262554 | Alpha-1-acid glycoprotein 1; Functions as transport protein in the blood stream. Binds various ligands in the interior of its beta-barrel domain. Also binds synthetic drugs and influences their distribution and availability in the body. Appears to function in modulating the activity of the immune system during the acute-phase reaction; Belongs to the calycin superfamily. Lipocalin family. | Serine palmitoyltransferase 1; Serine palmitoyltransferase (SPT). The heterodimer formed with SPTLC2 or SPTLC3 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1-SPTLC3-SPTSSA isozyme uses both C14-CoA and C16-CoA as substrates, with a slight preference for C14-CoA. The SPTLC1-SPTLC2-SPTSSB complex shows a strong preference for C18-CoA substrate, while the SPTLC1-SPTLC3-SPTSSB isozyme displays an ability to [...] | 0.943 |
ORM1 | SPTLC2 | ENSP00000259396 | ENSP00000216484 | Alpha-1-acid glycoprotein 1; Functions as transport protein in the blood stream. Binds various ligands in the interior of its beta-barrel domain. Also binds synthetic drugs and influences their distribution and availability in the body. Appears to function in modulating the activity of the immune system during the acute-phase reaction; Belongs to the calycin superfamily. Lipocalin family. | Serine palmitoyltransferase 2; Serine palmitoyltransferase (SPT). The heterodimer formed with LCB1/SPTLC1 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1-SPTLC2-SPTSSB complex displays a preference for C18-CoA substrate. Plays an important role in de novo sphyngolipid biosynthesis which is crucial for adipogenesis (By similarity). Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. | 0.910 |
ORM1 | SPTLC3 | ENSP00000259396 | ENSP00000381968 | Alpha-1-acid glycoprotein 1; Functions as transport protein in the blood stream. Binds various ligands in the interior of its beta-barrel domain. Also binds synthetic drugs and influences their distribution and availability in the body. Appears to function in modulating the activity of the immune system during the acute-phase reaction; Belongs to the calycin superfamily. Lipocalin family. | Serine palmitoyltransferase 3; Serine palmitoyltransferase (SPT). The heterodimer formed with LCB1/SPTLC1 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. SPT complexes containing SPTLC3 generate shorter chain sphingoid bases compared to complexes containing SPTLC2. The SPTLC1- SPTLC3-SPTSSA isozyme uses C12-CoA, C14-CoA and C16-CoA as substrates, with a slight preference for C14-CoA. On the other hand, the SPTLC1- SPTLC3-SPTSSB has the ability to use a broader range of acyl-CoAs without apparent preference. | 0.912 |
ORM2 | ORM1 | ENSP00000394936 | ENSP00000259396 | Alpha-1-acid glycoprotein 2; Functions as transport protein in the blood stream. Binds various hydrophobic ligands in the interior of its beta-barrel domain. Also binds synthetic drugs and influences their distribution and availability. Appears to function in modulating the activity of the immune system during the acute-phase reaction. | Alpha-1-acid glycoprotein 1; Functions as transport protein in the blood stream. Binds various ligands in the interior of its beta-barrel domain. Also binds synthetic drugs and influences their distribution and availability in the body. Appears to function in modulating the activity of the immune system during the acute-phase reaction; Belongs to the calycin superfamily. Lipocalin family. | 0.999 |
ORM2 | ORMDL3 | ENSP00000394936 | ENSP00000377724 | Alpha-1-acid glycoprotein 2; Functions as transport protein in the blood stream. Binds various hydrophobic ligands in the interior of its beta-barrel domain. Also binds synthetic drugs and influences their distribution and availability. Appears to function in modulating the activity of the immune system during the acute-phase reaction. | ORM1-like protein 3; Negative regulator of sphingolipid synthesis. May indirectly regulate endoplasmic reticulum-mediated Ca(+2) signaling. Belongs to the ORM family. | 0.774 |
ORM2 | SPTLC1 | ENSP00000394936 | ENSP00000262554 | Alpha-1-acid glycoprotein 2; Functions as transport protein in the blood stream. Binds various hydrophobic ligands in the interior of its beta-barrel domain. Also binds synthetic drugs and influences their distribution and availability. Appears to function in modulating the activity of the immune system during the acute-phase reaction. | Serine palmitoyltransferase 1; Serine palmitoyltransferase (SPT). The heterodimer formed with SPTLC2 or SPTLC3 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1-SPTLC3-SPTSSA isozyme uses both C14-CoA and C16-CoA as substrates, with a slight preference for C14-CoA. The SPTLC1-SPTLC2-SPTSSB complex shows a strong preference for C18-CoA substrate, while the SPTLC1-SPTLC3-SPTSSB isozyme displays an ability to [...] | 0.645 |
ORM2 | SPTLC2 | ENSP00000394936 | ENSP00000216484 | Alpha-1-acid glycoprotein 2; Functions as transport protein in the blood stream. Binds various hydrophobic ligands in the interior of its beta-barrel domain. Also binds synthetic drugs and influences their distribution and availability. Appears to function in modulating the activity of the immune system during the acute-phase reaction. | Serine palmitoyltransferase 2; Serine palmitoyltransferase (SPT). The heterodimer formed with LCB1/SPTLC1 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1-SPTLC2-SPTSSB complex displays a preference for C18-CoA substrate. Plays an important role in de novo sphyngolipid biosynthesis which is crucial for adipogenesis (By similarity). Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. | 0.652 |
ORM2 | SPTLC3 | ENSP00000394936 | ENSP00000381968 | Alpha-1-acid glycoprotein 2; Functions as transport protein in the blood stream. Binds various hydrophobic ligands in the interior of its beta-barrel domain. Also binds synthetic drugs and influences their distribution and availability. Appears to function in modulating the activity of the immune system during the acute-phase reaction. | Serine palmitoyltransferase 3; Serine palmitoyltransferase (SPT). The heterodimer formed with LCB1/SPTLC1 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. SPT complexes containing SPTLC3 generate shorter chain sphingoid bases compared to complexes containing SPTLC2. The SPTLC1- SPTLC3-SPTSSA isozyme uses C12-CoA, C14-CoA and C16-CoA as substrates, with a slight preference for C14-CoA. On the other hand, the SPTLC1- SPTLC3-SPTSSB has the ability to use a broader range of acyl-CoAs without apparent preference. | 0.668 |
ORMDL3 | ORM1 | ENSP00000377724 | ENSP00000259396 | ORM1-like protein 3; Negative regulator of sphingolipid synthesis. May indirectly regulate endoplasmic reticulum-mediated Ca(+2) signaling. Belongs to the ORM family. | Alpha-1-acid glycoprotein 1; Functions as transport protein in the blood stream. Binds various ligands in the interior of its beta-barrel domain. Also binds synthetic drugs and influences their distribution and availability in the body. Appears to function in modulating the activity of the immune system during the acute-phase reaction; Belongs to the calycin superfamily. Lipocalin family. | 0.887 |
ORMDL3 | ORM2 | ENSP00000377724 | ENSP00000394936 | ORM1-like protein 3; Negative regulator of sphingolipid synthesis. May indirectly regulate endoplasmic reticulum-mediated Ca(+2) signaling. Belongs to the ORM family. | Alpha-1-acid glycoprotein 2; Functions as transport protein in the blood stream. Binds various hydrophobic ligands in the interior of its beta-barrel domain. Also binds synthetic drugs and influences their distribution and availability. Appears to function in modulating the activity of the immune system during the acute-phase reaction. | 0.774 |
ORMDL3 | SPTLC1 | ENSP00000377724 | ENSP00000262554 | ORM1-like protein 3; Negative regulator of sphingolipid synthesis. May indirectly regulate endoplasmic reticulum-mediated Ca(+2) signaling. Belongs to the ORM family. | Serine palmitoyltransferase 1; Serine palmitoyltransferase (SPT). The heterodimer formed with SPTLC2 or SPTLC3 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1-SPTLC3-SPTSSA isozyme uses both C14-CoA and C16-CoA as substrates, with a slight preference for C14-CoA. The SPTLC1-SPTLC2-SPTSSB complex shows a strong preference for C18-CoA substrate, while the SPTLC1-SPTLC3-SPTSSB isozyme displays an ability to [...] | 0.999 |
ORMDL3 | SPTLC2 | ENSP00000377724 | ENSP00000216484 | ORM1-like protein 3; Negative regulator of sphingolipid synthesis. May indirectly regulate endoplasmic reticulum-mediated Ca(+2) signaling. Belongs to the ORM family. | Serine palmitoyltransferase 2; Serine palmitoyltransferase (SPT). The heterodimer formed with LCB1/SPTLC1 constitutes the catalytic core. The composition of the serine palmitoyltransferase (SPT) complex determines the substrate preference. The SPTLC1-SPTLC2-SPTSSA complex shows a strong preference for C16-CoA substrate, while the SPTLC1-SPTLC2-SPTSSB complex displays a preference for C18-CoA substrate. Plays an important role in de novo sphyngolipid biosynthesis which is crucial for adipogenesis (By similarity). Belongs to the class-II pyridoxal-phosphate-dependent aminotransferase family. | 0.999 |