Your Input: | |||||
CKB | Creatine kinase B-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. (381 aa) | ||||
BHMT | Betaine--homocysteine S-methyltransferase 1; Involved in the regulation of homocysteine metabolism. Converts betaine and homocysteine to dimethylglycine and methionine, respectively. This reaction is also required for the irreversible oxidation of choline. (406 aa) | ||||
CHKA | Choline kinase alpha; Has a key role in phospholipid biosynthesis and may contribute to tumor cell growth. Catalyzes the first step in phosphatidylcholine biosynthesis. Contributes to phosphatidylethanolamine biosynthesis. Phosphorylates choline and ethanolamine. Has higher activity with choline. (457 aa) | ||||
CAD | Glutamine-dependent carbamoyl-phosphate synthase; This protein is a 'fusion' protein encoding four enzymatic activities of the pyrimidine pathway (GATase, CPSase, ATCase and DHOase); In the central section; belongs to the metallo-dependent hydrolases superfamily. DHOase family. CAD subfamily. (2225 aa) | ||||
SLC5A7 | High affinity choline transporter 1; Transmembrane transporter that imports choline from the extracellular space into the neuron with high affinity. Choline uptake is the rate-limiting step in acetylcholine synthesis. Sodium ion- and chloride ion-dependent; Belongs to the sodium:solute symporter (SSF) (TC 2.A.21) family. (580 aa) | ||||
SELENOI | Ethanolaminephosphotransferase 1; Catalyzes phosphatidylethanolamine biosynthesis from CDP- ethanolamine. It thereby plays a central role in the formation and maintenance of vesicular membranes. Involved in the formation of phosphatidylethanolamine via 'Kennedy' pathway. (397 aa) | ||||
PEMT | Phosphatidylethanolamine N-methyltransferase; Catalyzes the three sequential steps of the methylation pathway of phosphatidylcholine biosynthesis, the SAM-dependent methylation of phosphatidylethanolamine (PE) to phosphatidylmonomethylethanolamine (PMME), PMME to phosphatidyldimethylethanolamine (PDME), and PDME to phosphatidylcholine (PC). (236 aa) | ||||
DMGDH | Dimethylglycine dehydrogenase, mitochondrial; Catalyzes the demethylation of N,N-dimethylglycine to sarcosine. Also has activity with sarcosine in vitro. (866 aa) | ||||
UMPS | Orotidine 5'-phosphate decarboxylase; Uridine monophosphate synthetase; In the C-terminal section; belongs to the OMP decarboxylase family. (480 aa) | ||||
CHPT1 | Cholinephosphotransferase 1; Catalyzes phosphatidylcholine biosynthesis from CDP-choline. It thereby plays a central role in the formation and maintenance of vesicular membranes. (406 aa) | ||||
CKM | Creatine kinase M-type; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. (381 aa) | ||||
DHODH | Dihydroorotate dehydrogenase (quinone), mitochondrial; Catalyzes the conversion of dihydroorotate to orotate with quinone as electron acceptor. (395 aa) | ||||
CEPT1 | Choline/ethanolaminephosphotransferase 1; Catalyzes both phosphatidylcholine and phosphatidylethanolamine biosynthesis from CDP-choline and CDP- ethanolamine, respectively. Involved in protein-dependent process of phospholipid transport to distribute phosphatidyl choline to the lumenal surface. Has a higher cholinephosphotransferase activity than ethanolaminephosphotransferase activity. (416 aa) | ||||
PTDSS1 | Phosphatidylserine synthase 1; Catalyzes a base-exchange reaction in which the polar head group of phosphatidylethanolamine (PE) or phosphatidylcholine (PC) is replaced by L-serine. In membranes, PTDSS1 catalyzes mainly the conversion of phosphatidylcholine. Also converts, in vitro and to a lesser extent, phosphatidylethanolamine. (473 aa) | ||||
CKMT2 | Creatine kinase S-type, mitochondrial; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa; Belongs to the ATP:guanido phosphotransferase family. (419 aa) | ||||
PISD | Phosphatidylserine decarboxylase proenzyme, mitochondrial; Catalyzes the formation of phosphatidylethanolamine (PtdEtn) from phosphatidylserine (PtdSer). Plays a central role in phospholipid metabolism and in the interorganelle trafficking of phosphatidylserine. Belongs to the phosphatidylserine decarboxylase family. PSD-B subfamily. Eukaryotic type I sub-subfamily. (409 aa) | ||||
ALDH7A1 | Alpha-aminoadipic semialdehyde dehydrogenase; Multifunctional enzyme mediating important protective effects. Metabolizes betaine aldehyde to betaine, an important cellular osmolyte and methyl donor. Protects cells from oxidative stress by metabolizing a number of lipid peroxidation-derived aldehydes. Involved in lysine catabolism; Belongs to the aldehyde dehydrogenase family. (539 aa) | ||||
CHKB | Choline/ethanolamine kinase; Has a key role in phospholipid metabolism, and catalyzes the first step of phosphatidylethanolamine and phosphatidylcholine biosynthesis. (395 aa) | ||||
INS | Insulin A chain; Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. (110 aa) | ||||
SLC44A1 | Choline transporter-like protein 1; Choline transporter. May be involved in membrane synthesis and myelin production; Belongs to the CTL (choline transporter-like) family. (657 aa) | ||||
GNMT | Glycine N-methyltransferase; Catalyzes the methylation of glycine by using S- adenosylmethionine (AdoMet) to form N-methylglycine (sarcosine) with the concomitant production of S-adenosylhomocysteine (AdoHcy). Possible crucial role in the regulation of tissue concentration of AdoMet and of metabolism of methionine. (295 aa) | ||||
FMO3 | Dimethylaniline monooxygenase [N-oxide-forming] 3; Essential hepatic enzyme that catalyzes the oxygenation of a wide variety of nitrogen- and sulfur-containing compounds including drugs as well as dietary compounds. Plays an important role in the metabolism of trimethylamine (TMA), via the production of trimethylamine N-oxide (TMAO) metabolite. TMA is generated by the action of gut microbiota using dietary precursors such as choline, choline containing compounds, betaine or L-carnitine. By regulating TMAO concentration, FMO3 directly impacts both platelet responsiveness and rate of thr [...] (532 aa) | ||||
CHAT | Choline O-acetyltransferase; Catalyzes the reversible synthesis of acetylcholine (ACh) from acetyl CoA and choline at cholinergic synapses. Belongs to the carnitine/choline acetyltransferase family. (748 aa) | ||||
CHDH | Choline dehydrogenase, mitochondrial; Choline dehydrogenase. (594 aa) | ||||
SLC22A13 | Solute carrier family 22 member 13. (551 aa) | ||||
PTDSS2 | Phosphatidylserine synthase 2; Catalyzes a base-exchange reaction in which the polar head group of phosphatidylethanolamine (PE) or phosphatidylcholine (PC) is replaced by L-serine. PTDSS2 is specific for phosphatatidylethanolamine and does not act on phosphatidylcholine; Belongs to the phosphatidyl serine synthase family. (487 aa) | ||||
CKMT1B | Creatine kinase U-type, mitochondrial; Reversibly catalyzes the transfer of phosphate between ATP and various phosphogens (e.g. creatine phosphate). Creatine kinase isoenzymes play a central role in energy transduction in tissues with large, fluctuating energy demands, such as skeletal muscle, heart, brain and spermatozoa. (417 aa) | ||||
PCYT1A | Choline-phosphate cytidylyltransferase A; Controls phosphatidylcholine synthesis; Belongs to the cytidylyltransferase family. (367 aa) |