STRINGSTRING
PLA2G6 PLA2G6 CASP3 CASP3 PLA2G4C PLA2G4C PNPLA6 PNPLA6 PLA2G10 PLA2G10 PLA2G2A PLA2G2A PNPLA4 PNPLA4 PLA2G4A PLA2G4A PNPLA2 PNPLA2 PNPLA3 PNPLA3 PNPLA8 PNPLA8
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
PLA2G685/88 kDa calcium-independent phospholipase A2; Catalyzes the release of fatty acids from phospholipids. It has been implicated in normal phospholipid remodeling, nitric oxide- induced or vasopressin-induced arachidonic acid release and in leukotriene and prostaglandin production. May participate in fas mediated apoptosis and in regulating transmembrane ion flux in glucose- stimulated B-cells. Has a role in cardiolipin (CL) deacylation. Required for both speed and directionality of monocyte MCP1/CCL2- induced chemotaxis through regulation of F-actin polymerization at the pseudopods. (806 aa)
CASP3Caspase-3 subunit p12; Involved in the activation cascade of caspases responsible for apoptosis execution. At the onset of apoptosis it proteolytically cleaves poly(ADP-ribose) polymerase (PARP) at a '216-Asp-|-Gly-217' bond. Cleaves and activates sterol regulatory element binding proteins (SREBPs) between the basic helix-loop-helix leucine zipper domain and the membrane attachment domain. Cleaves and activates caspase-6, -7 and -9. Involved in the cleavage of huntingtin. Triggers cell adhesion in sympathetic neurons through RET cleavage. (277 aa)
PLA2G4CCytosolic phospholipase A2 gamma; Has a preference for arachidonic acid at the sn-2 position of phosphatidylcholine as compared with palmitic acid. (551 aa)
PNPLA6Neuropathy target esterase; Phospholipase B that deacylates intracellular phosphatidylcholine (PtdCho), generating glycerophosphocholine (GroPtdCho). This deacylation occurs at both sn-2 and sn-1 positions of PtdCho. Its specific chemical modification by certain organophosphorus (OP) compounds leads to distal axonopathy. (1375 aa)
PLA2G10Group 10 secretory phospholipase A2; PA2 catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Has a powerful potency for releasing arachidonic acid from cell membrane phospholipids. Prefers phosphatidylethanolamine and phosphatidylcholine liposomes to those of phosphatidylserine. (165 aa)
PLA2G2APhospholipase A2, membrane associated; Catalyzes the calcium-dependent hydrolysis of the 2-acyl groups in 3-sn-phosphoglycerides. Thought to participate in the regulation of phospholipid metabolism in biomembranes including eicosanoid biosynthesis. Independent of its catalytic activity, acts as a ligand for integrins. Binds to and activates integrins ITGAV:ITGB3, ITGA4:ITGB1 and ITGA5:ITGB1. Binds to a site (site 2) which is distinct from the classical ligand-binding site (site 1) and induces integrin conformational changes and enhanced ligand binding to site 1. Induces cell proliferat [...] (144 aa)
PNPLA4Patatin-like phospholipase domain-containing protein 4; Lipid hydrolase. (253 aa)
PLA2G4ACytosolic phospholipase A2; Selectively hydrolyzes arachidonyl phospholipids in the sn-2 position releasing arachidonic acid. Together with its lysophospholipid activity, it is implicated in the initiation of the inflammatory response. (749 aa)
PNPLA2Patatin-like phospholipase domain-containing protein 2; Catalyzes the initial step in triglyceride hydrolysis in adipocyte and non-adipocyte lipid droplets. Also has acylglycerol transacylase activity. May act coordinately with LIPE/HLS within the lipolytic cascade. Regulates adiposome size and may be involved in the degradation of adiposomes. May play an important role in energy homeostasis. May play a role in the response of the organism to starvation, enhancing hydrolysis of triglycerides and providing free fatty acids to other tissues to be oxidized in situations of energy depletion. (504 aa)
PNPLA31-acylglycerol-3-phosphate O-acyltransferase PNPLA3; Specifically catalyzes coenzyme A (CoA)-dependent acylation of 1-acyl-sn-glycerol 3-phosphate (2-lysophosphatidic acid/LPA) to generate phosphatidic acid (PA), an important metabolic intermediate and precursor for both triglycerides and glycerophospholipids. Does not esterify other lysophospholipids. Acyl donors are long chain (at least C16) fatty acyl-CoAs: arachidonoyl-CoA, linoleoyl-CoA, oleoyl-CoA and at a lesser extent palmitoyl-CoA. Additionally possesses low triacylglycerol lipase and CoA-independent acylglycerol transacylase [...] (481 aa)
PNPLA8Calcium-independent phospholipase A2-gamma; Calcium-independent phospholipase A2, which catalyzes the hydrolysis of the sn-2 position of glycerophospholipids, PtdSer and to a lower extent PtdCho. Cleaves membrane phospholipids. (782 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (20%) [HD]