STRINGSTRING
COX17 COX17 NDUFB5 NDUFB5 CMPK2 CMPK2 NDUFA2 NDUFA2 PDK4 PDK4 NDUFB4 NDUFB4 SIRT4 SIRT4 UQCRC1 UQCRC1 MTERF1 MTERF1 NDUFV1 NDUFV1 ACTB ACTB NDUFB1 NDUFB1 MTERF4 MTERF4 AIFM2 AIFM2 SIRT5 SIRT5 COX6B1 COX6B1 NDUFAB1 NDUFAB1 COX4I1 COX4I1 DMAC2L DMAC2L ACSS3 ACSS3 POLG2 POLG2 STOML1 STOML1 SLC25A30 SLC25A30 TFAM TFAM SSBP1 SSBP1 NDUFB2 NDUFB2 NDUFB3 NDUFB3 PNPT1 PNPT1 CHCHD10 CHCHD10 BCL2 BCL2 VDAC1 VDAC1 SUOX SUOX GLDC GLDC ACOT9 ACOT9 MGME1 MGME1 BAK1 BAK1 UQCC1 UQCC1 NDUFA8 NDUFA8 NDUFS5 NDUFS5 VDAC2 VDAC2 COX7A2 COX7A2 TDRKH TDRKH SCCPDH SCCPDH MT-ATP8 MT-ATP8 MT-ND3 MT-ND3 MT-ND2 MT-ND2 MT-ND4 MT-ND4 MT-ND5 MT-ND5 MT-ND4L MT-ND4L MT-ND6 MT-ND6 MT-ATP6 MT-ATP6 MT-CYB MT-CYB MT-CO1 MT-CO1 SUPV3L1 SUPV3L1 DNA2 DNA2 ATP5F1C ATP5F1C MSRB3 MSRB3 NDUFV3 NDUFV3 C15orf48 C15orf48 UQCR10 UQCR10 OSBPL1A OSBPL1A COX5A COX5A FKBP10 FKBP10 TWNK TWNK UQCRH UQCRH CYCS CYCS COX11 COX11 NDUFB8 NDUFB8 ABCB8 ABCB8 TYSND1 TYSND1 STOM STOM ATP5MC3 ATP5MC3 SLC25A4 SLC25A4 NDUFB9 NDUFB9 NDUFS6 NDUFS6 ATP10D ATP10D CYP11A1 CYP11A1 SDHA SDHA PPARGC1A PPARGC1A ATP5F1B ATP5F1B
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
COX17Cytochrome c oxidase copper chaperone; Copper metallochaperone essential for the assembly of the mitochondrial respiratory chain complex IV (CIV), also known as cytochrome c oxidase. Binds two copper ions and delivers them to the metallochaperone SCO1 which transports the copper ions to the Cu(A) site on the cytochrome c oxidase subunit II (MT-CO2/COX2). (63 aa)
NDUFB5NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 5, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (189 aa)
CMPK2UMP-CMP kinase 2, mitochondrial; May participate in dUTP and dCTP synthesis in mitochondria. Is able to phosphorylate dUMP, dCMP, CMP, UMP and monophosphates of the pyrimidine nucleoside analogs ddC, dFdC, araC, BVDU and FdUrd with ATP as phosphate donor. Efficacy is highest for dUMP followed by dCMP; CMP and UMP are poor substrates. May be involved in mtDNA depletion caused by long term treatment with ddC or other pyrimidine analogs. Also displays broad nucleoside diphosphate kinase activity. (449 aa)
NDUFA2NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (99 aa)
PDK4[Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 4, mitochondrial; Kinase that plays a key role in regulation of glucose and fatty acid metabolism and homeostasis via phosphorylation of the pyruvate dehydrogenase subunits PDHA1 and PDHA2. This inhibits pyruvate dehydrogenase activity, and thereby regulates metabolite flux through the tricarboxylic acid cycle, down-regulates aerobic respiration and inhibits the formation of acetyl-coenzyme A from pyruvate. Inhibition of pyruvate dehydrogenase decreases glucose utilization and increases fat metabolism in response to prolonge [...] (411 aa)
NDUFB4NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (129 aa)
SIRT4NAD-dependent protein lipoamidase sirtuin-4, mitochondrial; Acts as NAD-dependent protein lipoamidase, ADP-ribosyl transferase and deacetylase. Catalyzes more efficiently removal of lipoyl- and biotinyl- than acetyl-lysine modifications. Inhibits the pyruvate dehydrogenase complex (PDH) activity via the enzymatic hydrolysis of the lipoamide cofactor from the E2 component, DLAT, in a phosphorylation-independent manner. Catalyzes the transfer of ADP-ribosyl groups onto target proteins, including mitochondrial GLUD1, inhibiting GLUD1 enzyme activity. Acts as a negative regulator of mitoch [...] (314 aa)
UQCRC1Cytochrome b-c1 complex subunit 1, mitochondrial; Component of the ubiquinol-cytochrome c oxidoreductase, a multisubunit transmembrane complex that is part of the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradie [...] (480 aa)
MTERF1Transcription termination factor 1, mitochondrial; Transcription termination factor. Binds to a 28 bp region within the tRNA(Leu(uur)) gene at a position immediately adjacent to and downstream of the 16S rRNA gene; this region comprises a tridecamer sequence critical for directing accurate termination. Binds DNA along the major grove and promotes DNA bending and partial unwinding. Promotes base flipping. Transcription termination activity appears to be polarized with highest specificity for transcripts initiated on the light strand; Belongs to the mTERF family. (399 aa)
NDUFV1NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (464 aa)
ACTBActin, cytoplasmic 1, N-terminally processed; Actin is a highly conserved protein that polymerizes to produce filaments that form cross-linked networks in the cytoplasm of cells. Actin exists in both monomeric (G-actin) and polymeric (F-actin) forms, both forms playing key functions, such as cell motility and contraction. In addition to their role in the cytoplasmic cytoskeleton, G- and F-actin also localize in the nucleus, and regulate gene transcription and motility and repair of damaged DNA. (375 aa)
NDUFB1NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 1; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (105 aa)
MTERF4Transcription termination factor 4, mitochondrial; Regulator of mitochondrial ribosome biogenesis and translation. Binds to mitochondrial ribosomal RNAs 16S, 12S and 7S and targets NSUN4 RNA methyltransferase to the mitochondrial large ribosomal subunit (39S); Belongs to the mTERF family. (381 aa)
AIFM2Ferroptosis suppressor protein 1; A NAD(P)H-dependent oxidoreductase involved in cellular oxidative stress response. At the plasma membrane, catalyzes reduction of coenzyme Q/ubiquinone-10 to ubiquinol-10, a lipophilic radical- trapping antioxidant that prevents lipid oxidative damage and consequently ferroptosis. Cooperates with GPX4 to suppress phospholipid peroxidation and ferroptosis. This anti-ferroptotic function is independent of cellular glutathione levels. May play a role in mitochondrial stress signaling. Upon oxidative stress, associates with the lipid peroxidation end produ [...] (373 aa)
SIRT5NAD-dependent protein deacylase sirtuin-5, mitochondrial; NAD-dependent lysine demalonylase, desuccinylase and deglutarylase that specifically removes malonyl, succinyl and glutaryl groups on target proteins. Activates CPS1 and contributes to the regulation of blood ammonia levels during prolonged fasting: acts by mediating desuccinylation and deglutarylation of CPS1, thereby increasing CPS1 activity in response to elevated NAD levels during fasting. Activates SOD1 by mediating its desuccinylation, leading to reduced reactive oxygen species. Activates SHMT2 by mediating its desuccinyla [...] (310 aa)
COX6B1Cytochrome c oxidase subunit 6B1; Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol- cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and [...] (86 aa)
NDUFAB1Acyl carrier protein, mitochondrial; Carrier of the growing fatty acid chain in fatty acid biosynthesis (By similarity). Accessory and non-catalytic subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), which functions in the transfer of electrons from NADH to the respiratory chain. (156 aa)
COX4I1Cytochrome c oxidase subunit 4 isoform 1, mitochondrial; Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol- cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives tran [...] (169 aa)
DMAC2LATP synthase subunit s, mitochondrial; Involved in regulation of mitochondrial membrane ATP synthase. Necessary for H(+) conduction of ATP synthase. Facilitates energy-driven catalysis of ATP synthesis by blocking a proton leak through an alternative proton exit pathway. (215 aa)
ACSS3Acyl-CoA synthetase short-chain family member 3, mitochondrial; Catalyzes the synthesis of acetyl-CoA from short-chain fatty acids. Propionate is the preferred substrate. Can utilize acetate and butyrate with a much lower affinity (By similarity); Belongs to the ATP-dependent AMP-binding enzyme family. (686 aa)
POLG2DNA polymerase subunit gamma-2, mitochondrial; Mitochondrial polymerase processivity subunit. Stimulates the polymerase and exonuclease activities, and increases the processivity of the enzyme. Binds to ss-DNA. (485 aa)
STOML1Stomatin-like protein 1; May play a role in cholesterol transfer to late endosomes. May play a role in modulating membrane acid-sensing ion channels. Can specifically inhibit proton-gated current of ASIC1 isoform 1. Can increase inactivation speed of ASIC3. May be involved in regulation of proton sensing in dorsal root ganglions (By similarity). May play a role in protecting FBXW7 isoform 3 from degradation ; Belongs to the band 7/mec-2 family. (398 aa)
SLC25A30Kidney mitochondrial carrier protein 1; Probable transporter; Belongs to the mitochondrial carrier (TC 2.A.29) family. (291 aa)
TFAMTranscription factor A, mitochondrial; Binds to the mitochondrial light strand promoter and functions in mitochondrial transcription regulation. Component of the mitochondrial transcription initiation complex, composed at least of TFB2M, TFAM and POLRMT that is required for basal transcription of mitochondrial DNA. In this complex, TFAM recruits POLRMT to a specific promoter whereas TFB2M induces structural changes in POLRMT to enable promoter opening and trapping of the DNA non-template strand. Required for accurate and efficient promoter recognition by the mitochondrial RNA polymeras [...] (246 aa)
SSBP1Single-stranded DNA-binding protein, mitochondrial; Binds preferentially and cooperatively to pyrimidine rich single-stranded DNA (ss-DNA). In vitro, required to maintain the copy number of mitochondrial DNA (mtDNA) and plays crucial roles during mtDNA replication that stimulate activity of the replisome components POLG and TWNK at the replication fork. Promotes the activity of the gamma complex polymerase POLG, largely by organizing the template DNA and eliminating secondary structures to favor ss-DNA conformations that facilitate POLG activity. In addition it is able to promote the 5 [...] (148 aa)
NDUFB2NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 2, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (105 aa)
NDUFB3NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 3; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (98 aa)
PNPT1Polyribonucleotide nucleotidyltransferase 1, mitochondrial; RNA-binding protein implicated in numerous RNA metabolic processes. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'-to-5' direction. Mitochondrial intermembrane factor with RNA-processing exoribonulease activity. Component of the mitochondrial degradosome (mtEXO) complex, that degrades 3' overhang double-stranded RNA with a 3'-to-5' directionality in an ATP-dependent manner. Involved in the degradation of non-coding mitochondrial transcripts (MT-ncRNA) and tRNA-like molecules. Require [...] (783 aa)
CHCHD10Coiled-coil-helix-coiled-coil-helix domain-containing protein 10, mitochondrial; May be involved in the maintenance of mitochondrial organization and mitochondrial cristae structure. (149 aa)
BCL2Apoptosis regulator Bcl-2; Suppresses apoptosis in a variety of cell systems including factor-dependent lymphohematopoietic and neural cells. Regulates cell death by controlling the mitochondrial membrane permeability. Appears to function in a feedback loop system with caspases. Inhibits caspase activity either by preventing the release of cytochrome c from the mitochondria and/or by binding to the apoptosis-activating factor (APAF-1). May attenuate inflammation by impairing NLRP1-inflammasome activation, hence CASP1 activation and IL1B release. (239 aa)
VDAC1Voltage-dependent anion-selective channel protein 1; Forms a channel through the mitochondrial outer membrane and also the plasma membrane. The channel at the outer mitochondrial membrane allows diffusion of small hydrophilic molecules; in the plasma membrane it is involved in cell volume regulation and apoptosis. It adopts an open conformation at low or zero membrane potential and a closed conformation at potentials above 30-40 mV. The open state has a weak anion selectivity whereas the closed state is cation-selective. May participate in the formation of the permeability transition p [...] (283 aa)
SUOXSulfite oxidase, mitochondrial; Sulfite oxidase. (545 aa)
GLDCGlycine dehydrogenase (decarboxylating), mitochondrial; The glycine cleavage system catalyzes the degradation of glycine. The P protein (GLDC) binds the alpha-amino group of glycine through its pyridoxal phosphate cofactor; CO(2) is released and the remaining methylamine moiety is then transferred to the lipoamide cofactor of the H protein (GCSH). (1020 aa)
ACOT9Acyl-coenzyme A thioesterase 9, mitochondrial; Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. Active on long chain acyl-CoAs. (448 aa)
MGME1Mitochondrial genome maintenance exonuclease 1; Metal-dependent single-stranded DNA (ssDNA) exonuclease involved in mitochondrial genome maintenance. Has preference for 5'-3' exonuclease activity but is also capable of endoduclease activity on linear substrates. Necessary for maintenance of proper 7S DNA levels. Probably involved in mitochondrial DNA (mtDNA) repair, possibly via the processing of displaced DNA containing Okazaki fragments during RNA- primed DNA synthesis on the lagging strand or via processing of DNA flaps during long-patch base excision repair. Specifically binds 5- h [...] (344 aa)
BAK1Bcl-2 homologous antagonist/killer; Plays a role in the mitochondrial apoptosic process. Upon arrival of cell death signals, promotes mitochondrial outer membrane (MOM) permeabilization by oligomerizing to form pores within the MOM. This releases apoptogenic factors into the cytosol, including cytochrome c, promoting the activation of caspase 9 which in turn processes and activates the effector caspases. (211 aa)
UQCC1Ubiquinol-cytochrome-c reductase complex assembly factor 1; Required for the assembly of the ubiquinol-cytochrome c reductase complex (mitochondrial respiratory chain complex III or cytochrome b-c1 complex). Involved in cytochrome b translation and/or stability. (299 aa)
NDUFA8NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (172 aa)
NDUFS5NADH dehydrogenase [ubiquinone] iron-sulfur protein 5; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (106 aa)
VDAC2Voltage-dependent anion-selective channel protein 2; Forms a channel through the mitochondrial outer membrane that allows diffusion of small hydrophilic molecules. The channel adopts an open conformation at low or zero membrane potential and a closed conformation at potentials above 30-40 mV. The open state has a weak anion selectivity whereas the closed state is cation-selective; Belongs to the eukaryotic mitochondrial porin family. (309 aa)
COX7A2Cytochrome c oxidase subunit 7A2, mitochondrial; Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol- cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembran [...] (115 aa)
TDRKHTudor and KH domain-containing protein; Participates in the primary piRNA biogenesis pathway and is required during spermatogenesis to repress transposable elements and prevent their mobilization, which is essential for the germline integrity. The piRNA metabolic process mediates the repression of transposable elements during meiosis by forming complexes composed of piRNAs and Piwi proteins and govern the methylation and subsequent repression of transposons. Required for the final steps of primary piRNA biogenesis by participating in the processing of 31-37 nt intermediates into mature [...] (561 aa)
SCCPDHSaccharopine dehydrogenase-like oxidoreductase; Saccharopine dehydrogenase; Belongs to the saccharopine dehydrogenase family. (429 aa)
MT-ATP8ATP synthase protein 8; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subuni [...] (68 aa)
MT-ND3NADH-ubiquinone oxidoreductase chain 3; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (115 aa)
MT-ND2NADH-ubiquinone oxidoreductase chain 2; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (347 aa)
MT-ND4NADH-ubiquinone oxidoreductase chain 4; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (459 aa)
MT-ND5NADH-ubiquinone oxidoreductase chain 5; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (603 aa)
MT-ND4LNADH-ubiquinone oxidoreductase chain 4L; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (98 aa)
MT-ND6NADH-ubiquinone oxidoreductase chain 6; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (174 aa)
MT-ATP6ATP synthase subunit a; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subuni [...] (226 aa)
MT-CYBCytochrome b; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex) that is part of the mitochondrial respiratory chain. The b-c1 complex mediates electron transfer from ubiquinol to cytochrome c. Contributes to the generation of a proton gradient across the mitochondrial membrane that is then used for ATP synthesis. (380 aa)
MT-CO1Cytochrome c oxidase subunit 1; Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol- cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and t [...] (513 aa)
SUPV3L1ATP-dependent RNA helicase SUPV3L1, mitochondrial; Major helicase player in mitochondrial RNA metabolism. Component of the mitochondrial degradosome (mtEXO) complex, that degrades 3' overhang double-stranded RNA with a 3'-to-5' directionality in an ATP-dependent manner. Involved in the degradation of non-coding mitochondrial transcripts (MT-ncRNA) and tRNA-like molecules. ATPase and ATP-dependent multisubstrate helicase, able to unwind double-stranded (ds) DNA and RNA, and RNA/DNA heteroduplexes in the 5'-to-3' direction. Plays a role in the RNA surveillance system in mitochondria; reg [...] (786 aa)
DNA2DNA replication ATP-dependent helicase/nuclease DNA2; Key enzyme involved in DNA replication and DNA repair in nucleus and mitochondrion. Involved in Okazaki fragments processing by cleaving long flaps that escape FEN1: flaps that are longer than 27 nucleotides are coated by replication protein A complex (RPA), leading to recruit DNA2 which cleaves the flap until it is too short to bind RPA and becomes a substrate for FEN1. Also involved in 5'-end resection of DNA during double-strand break (DSB) repair: recruited by BLM and mediates the cleavage of 5'-ssDNA, while the 3'-ssDNA cleavag [...] (1060 aa)
ATP5F1CATP synthase subunit gamma, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the [...] (298 aa)
MSRB3Methionine-R-sulfoxide reductase B3; Catalyzes the reduction of free and protein-bound methionine sulfoxide to methionine. Isoform 2 is essential for hearing. (192 aa)
NDUFV3NADH dehydrogenase [ubiquinone] flavoprotein 3, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. May be the terminally assembled subunit of Complex I. (473 aa)
C15orf48Normal mucosa of esophagus-specific gene 1 protein; Chromosome 15 open reading frame 48; Belongs to the complex I NDUFA4 subunit family. (83 aa)
UQCR10Cytochrome b-c1 complex subunit 9; Component of the ubiquinol-cytochrome c oxidoreductase, a multisubunit transmembrane complex that is part of the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inn [...] (63 aa)
OSBPL1AOxysterol-binding protein-related protein 1; Binds phospholipids; exhibits strong binding to phosphatidic acid and weak binding to phosphatidylinositol 3-phosphate (By similarity). Stabilizes GTP-bound RAB7A on late endosomes/lysosomes and alters functional properties of late endocytic compartments via its interaction with RAB7A. Binds 25-hydroxycholesterol and cholesterol ; Belongs to the OSBP family. (950 aa)
COX5ACytochrome c oxidase subunit 5A, mitochondrial; Component of the cytochrome c oxidase, the last enzyme in the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol- cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane [...] (150 aa)
FKBP10Peptidyl-prolyl cis-trans isomerase FKBP10; PPIases accelerate the folding of proteins during protein synthesis. (582 aa)
TWNKTwinkle protein, mitochondrial; Involved in mitochondrial DNA (mtDNA) metabolism. Could function as an adenine nucleotide-dependent DNA helicase. Function inferred to be critical for lifetime maintenance of mtDNA integrity. In vitro, forms in combination with POLG, a processive replication machinery, which can use double-stranded DNA (dsDNA) as template to synthesize single-stranded DNA (ssDNA) molecules. May be a key regulator of mtDNA copy number in mammals. (684 aa)
UQCRHCytochrome b-c1 complex subunit 6, mitochondrial; Component of the ubiquinol-cytochrome c oxidoreductase, a multisubunit transmembrane complex that is part of the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b-c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradie [...] (91 aa)
CYCSCytochrome c; Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain. (105 aa)
COX11Cytochrome c oxidase assembly protein COX11, mitochondrial; Exerts its effect at some terminal stage of cytochrome c oxidase synthesis, probably by being involved in the insertion of the copper B into subunit I. (276 aa)
NDUFB8NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (186 aa)
ABCB8Mitochondrial potassium channel ATP-binding subunit; ATP-binding subunit of the mitochondrial potassium channel located in the mitochondrial inner membrane. Together with CCDC51/MITOK, forms a protein complex localized in the mitochondria that mediates ATP-dependent potassium currents across the inner membrane (that is, mitoK(ATP) channel). Plays a role in mitochondrial iron transport. Required for maintenance of normal cardiac function, possibly by influencing mitochondrial iron export and regulating the maturation of cytosolic iron sulfur cluster-containing enzymes (By similarity). (735 aa)
TYSND1Peroxisomal leader peptide-processing protease, 15 kDa form; Peroxisomal protease that mediates both the removal of the leader peptide from proteins containing a PTS2 target sequence and processes several PTS1-containing proteins. Catalyzes the processing of PTS1-proteins involved in the peroxisomal beta-oxidation of fatty acids. (566 aa)
STOMErythrocyte band 7 integral membrane protein; Regulates ion channel activity and transmembrane ion transport. Regulates ASIC2 and ASIC3 channel activity; Belongs to the band 7/mec-2 family. (288 aa)
ATP5MC3ATP synthase F(0) complex subunit C3, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanis [...] (142 aa)
SLC25A4ADP/ATP translocase 1; Involved in mitochondrial ADP/ATP transport. Catalyzes the exchange of cytoplasmic ADP with mitochondrial ATP across the mitochondrial inner membrane. (298 aa)
NDUFB9NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (179 aa)
NDUFS6NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (124 aa)
ATP10DProbable phospholipid-transporting ATPase VD; Catalytic component of a P4-ATPase flippase complex which catalyzes the hydrolysis of ATP coupled to the transport of aminophospholipids from the outer to the inner leaflet of various membranes and ensures the maintenance of asymmetric distribution of phospholipids. Phospholipid translocation seems also to be implicated in vesicle formation and in uptake of lipid signaling molecules (Probable); Belongs to the cation transport ATPase (P-type) (TC 3.A.3) family. Type IV subfamily. (1426 aa)
CYP11A1Cholesterol side-chain cleavage enzyme, mitochondrial; A cytochrome P450 monooxygenase that catalyzes the side-chain hydroxylation and cleavage of cholesterol to pregnenolone, the precursor of most steroid hormones. Catalyzes three sequential oxidation reactions of cholesterol, namely the hydroxylation at C22 followed with the hydroxylation at C20 to yield 20R,22R- hydroxycholesterol that is further cleaved between C20 and C22 to yield the C21-steroid pregnenolone and 4-methylpentanal. Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate and reducing the se [...] (521 aa)
SDHASuccinate dehydrogenase [ubiquinone] flavoprotein subunit, mitochondrial; Flavoprotein (FP) subunit of succinate dehydrogenase (SDH) that is involved in complex II of the mitochondrial electron transport chain and is responsible for transferring electrons from succinate to ubiquinone (coenzyme Q). Can act as a tumor suppressor ; Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily. (664 aa)
PPARGC1APeroxisome proliferator-activated receptor gamma coactivator 1-alpha; Transcriptional coactivator for steroid receptors and nuclear receptors. Greatly increases the transcriptional activity of PPARG and thyroid hormone receptor on the uncoupling protein promoter. Can regulate key mitochondrial genes that contribute to the program of adaptive thermogenesis. Plays an essential role in metabolic reprogramming in response to dietary availability through coordination of the expression of a wide array of genes involved in glucose and fatty acid metabolism. Induces the expression of PERM1 in [...] (798 aa)
ATP5F1BATP synthase subunit beta, mitochondrial; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core, and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the c [...] (529 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (26%) [HD]