node1 | node2 | node1 accession | node2 accession | node1 annotation | node2 annotation | score |
CYP24A1 | CYP2R1 | ENSP00000216862 | ENSP00000334592 | 1,25-dihydroxyvitamin D(3) 24-hydroxylase, mitochondrial; A cytochrome P450 monooxygenase with a key role in vitamin D catabolism and calcium homeostasis. Via C24- and C23-oxidation pathways, catalyzes the inactivation of both the vitamin D precursor calcidiol (25-hydroxyvitamin D(3)) and the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)). With initial hydroxylation at C-24 (via C24-oxidation pathway), performs a sequential 6-step oxidation of calcitriol leading to the formation of the biliary metabolite calcitroic acid. With initial hydroxylation at C-23 (via C23-oxidati [...] | Vitamin D 25-hydroxylase; Has a D-25-hydroxylase activity on both forms of vitamin D, vitamin D(2) and D(3). | 0.955 |
CYP24A1 | DHCR7 | ENSP00000216862 | ENSP00000347717 | 1,25-dihydroxyvitamin D(3) 24-hydroxylase, mitochondrial; A cytochrome P450 monooxygenase with a key role in vitamin D catabolism and calcium homeostasis. Via C24- and C23-oxidation pathways, catalyzes the inactivation of both the vitamin D precursor calcidiol (25-hydroxyvitamin D(3)) and the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)). With initial hydroxylation at C-24 (via C24-oxidation pathway), performs a sequential 6-step oxidation of calcitriol leading to the formation of the biliary metabolite calcitroic acid. With initial hydroxylation at C-23 (via C23-oxidati [...] | 7-dehydrocholesterol reductase; Production of cholesterol by reduction of C7-C8 double bond of 7-dehydrocholesterol (7-DHC); Belongs to the ERG4/ERG24 family. | 0.826 |
CYP24A1 | NADSYN1 | ENSP00000216862 | ENSP00000326424 | 1,25-dihydroxyvitamin D(3) 24-hydroxylase, mitochondrial; A cytochrome P450 monooxygenase with a key role in vitamin D catabolism and calcium homeostasis. Via C24- and C23-oxidation pathways, catalyzes the inactivation of both the vitamin D precursor calcidiol (25-hydroxyvitamin D(3)) and the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)). With initial hydroxylation at C-24 (via C24-oxidation pathway), performs a sequential 6-step oxidation of calcitriol leading to the formation of the biliary metabolite calcitroic acid. With initial hydroxylation at C-23 (via C23-oxidati [...] | Glutamine-dependent NAD(+) synthetase; Catalyzes the ATP-dependent amidation of deamido-NAD to form NAD. Uses L-glutamine as a nitrogen source. | 0.723 |
CYP2R1 | CYP24A1 | ENSP00000334592 | ENSP00000216862 | Vitamin D 25-hydroxylase; Has a D-25-hydroxylase activity on both forms of vitamin D, vitamin D(2) and D(3). | 1,25-dihydroxyvitamin D(3) 24-hydroxylase, mitochondrial; A cytochrome P450 monooxygenase with a key role in vitamin D catabolism and calcium homeostasis. Via C24- and C23-oxidation pathways, catalyzes the inactivation of both the vitamin D precursor calcidiol (25-hydroxyvitamin D(3)) and the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)). With initial hydroxylation at C-24 (via C24-oxidation pathway), performs a sequential 6-step oxidation of calcitriol leading to the formation of the biliary metabolite calcitroic acid. With initial hydroxylation at C-23 (via C23-oxidati [...] | 0.955 |
CYP2R1 | DHCR7 | ENSP00000334592 | ENSP00000347717 | Vitamin D 25-hydroxylase; Has a D-25-hydroxylase activity on both forms of vitamin D, vitamin D(2) and D(3). | 7-dehydrocholesterol reductase; Production of cholesterol by reduction of C7-C8 double bond of 7-dehydrocholesterol (7-DHC); Belongs to the ERG4/ERG24 family. | 0.911 |
CYP2R1 | NADSYN1 | ENSP00000334592 | ENSP00000326424 | Vitamin D 25-hydroxylase; Has a D-25-hydroxylase activity on both forms of vitamin D, vitamin D(2) and D(3). | Glutamine-dependent NAD(+) synthetase; Catalyzes the ATP-dependent amidation of deamido-NAD to form NAD. Uses L-glutamine as a nitrogen source. | 0.847 |
DHCR7 | CYP24A1 | ENSP00000347717 | ENSP00000216862 | 7-dehydrocholesterol reductase; Production of cholesterol by reduction of C7-C8 double bond of 7-dehydrocholesterol (7-DHC); Belongs to the ERG4/ERG24 family. | 1,25-dihydroxyvitamin D(3) 24-hydroxylase, mitochondrial; A cytochrome P450 monooxygenase with a key role in vitamin D catabolism and calcium homeostasis. Via C24- and C23-oxidation pathways, catalyzes the inactivation of both the vitamin D precursor calcidiol (25-hydroxyvitamin D(3)) and the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)). With initial hydroxylation at C-24 (via C24-oxidation pathway), performs a sequential 6-step oxidation of calcitriol leading to the formation of the biliary metabolite calcitroic acid. With initial hydroxylation at C-23 (via C23-oxidati [...] | 0.826 |
DHCR7 | CYP2R1 | ENSP00000347717 | ENSP00000334592 | 7-dehydrocholesterol reductase; Production of cholesterol by reduction of C7-C8 double bond of 7-dehydrocholesterol (7-DHC); Belongs to the ERG4/ERG24 family. | Vitamin D 25-hydroxylase; Has a D-25-hydroxylase activity on both forms of vitamin D, vitamin D(2) and D(3). | 0.911 |
DHCR7 | NADSYN1 | ENSP00000347717 | ENSP00000326424 | 7-dehydrocholesterol reductase; Production of cholesterol by reduction of C7-C8 double bond of 7-dehydrocholesterol (7-DHC); Belongs to the ERG4/ERG24 family. | Glutamine-dependent NAD(+) synthetase; Catalyzes the ATP-dependent amidation of deamido-NAD to form NAD. Uses L-glutamine as a nitrogen source. | 0.819 |
DHFR | MTHFD1 | ENSP00000396308 | ENSP00000498336 | Dihydrofolate reductase; Key enzyme in folate metabolism. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. Binds its own mRNA and that of DHFR2. | C-1-tetrahydrofolate synthase, cytoplasmic, N-terminally processed; Methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1; In the N-terminal section; belongs to the tetrahydrofolate dehydrogenase/cyclohydrolase family. | 0.990 |
DHFR | MTHFR | ENSP00000396308 | ENSP00000365770 | Dihydrofolate reductase; Key enzyme in folate metabolism. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. Binds its own mRNA and that of DHFR2. | Methylenetetrahydrofolate reductase; Catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-substrate for homocysteine remethylation to methionine. | 0.843 |
DHFR | MTR | ENSP00000396308 | ENSP00000355536 | Dihydrofolate reductase; Key enzyme in folate metabolism. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. Binds its own mRNA and that of DHFR2. | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate (By similarity); Belongs to the vitamin-B12 dependent methionine synthase family. | 0.978 |
DHFR | MTRR | ENSP00000396308 | ENSP00000402510 | Dihydrofolate reductase; Key enzyme in folate metabolism. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. Binds its own mRNA and that of DHFR2. | Methionine synthase reductase; Involved in the reductive regeneration of cob(I)alamin (vitamin B12) cofactor required for the maintenance of methionine synthase in a functional state. Necessary for utilization of methylgroups from the folate cycle, thereby affecting transgenerational epigenetic inheritance. Folate pathway donates methyl groups necessary for cellular methylation and affects different pathways such as DNA methylation, possibly explaining the transgenerational epigenetic inheritance effects. | 0.695 |
DHFR | SHMT1 | ENSP00000396308 | ENSP00000318868 | Dihydrofolate reductase; Key enzyme in folate metabolism. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. Binds its own mRNA and that of DHFR2. | Serine hydroxymethyltransferase, cytosolic; Interconversion of serine and glycine. | 0.995 |
DHFR | SHMT2 | ENSP00000396308 | ENSP00000333667 | Dihydrofolate reductase; Key enzyme in folate metabolism. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. Binds its own mRNA and that of DHFR2. | Serine hydroxymethyltransferase, mitochondrial; Catalyzes the cleavage of serine to glycine accompanied with the production of 5,10-methylenetetrahydrofolate, an essential intermediate for purine biosynthesis. Serine provides the major source of folate one-carbon in cells by catalyzing the transfer of one carbon from serine to tetrahydrofolate. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway via its role in glycine and tetrahydrofolate metabolism: thymidylate biosynthesis is required to prevent uracil accumulation in mtDNA. Also required for mitochondrial tran [...] | 0.992 |
DHFR | TYMS | ENSP00000396308 | ENSP00000315644 | Dihydrofolate reductase; Key enzyme in folate metabolism. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. Binds its own mRNA and that of DHFR2. | Thymidylate synthase; Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. | 0.999 |
MTHFD1 | DHFR | ENSP00000498336 | ENSP00000396308 | C-1-tetrahydrofolate synthase, cytoplasmic, N-terminally processed; Methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1; In the N-terminal section; belongs to the tetrahydrofolate dehydrogenase/cyclohydrolase family. | Dihydrofolate reductase; Key enzyme in folate metabolism. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. Binds its own mRNA and that of DHFR2. | 0.990 |
MTHFD1 | MTHFR | ENSP00000498336 | ENSP00000365770 | C-1-tetrahydrofolate synthase, cytoplasmic, N-terminally processed; Methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1; In the N-terminal section; belongs to the tetrahydrofolate dehydrogenase/cyclohydrolase family. | Methylenetetrahydrofolate reductase; Catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-substrate for homocysteine remethylation to methionine. | 0.996 |
MTHFD1 | MTR | ENSP00000498336 | ENSP00000355536 | C-1-tetrahydrofolate synthase, cytoplasmic, N-terminally processed; Methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1; In the N-terminal section; belongs to the tetrahydrofolate dehydrogenase/cyclohydrolase family. | Methionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate (By similarity); Belongs to the vitamin-B12 dependent methionine synthase family. | 0.997 |
MTHFD1 | MTRR | ENSP00000498336 | ENSP00000402510 | C-1-tetrahydrofolate synthase, cytoplasmic, N-terminally processed; Methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1; In the N-terminal section; belongs to the tetrahydrofolate dehydrogenase/cyclohydrolase family. | Methionine synthase reductase; Involved in the reductive regeneration of cob(I)alamin (vitamin B12) cofactor required for the maintenance of methionine synthase in a functional state. Necessary for utilization of methylgroups from the folate cycle, thereby affecting transgenerational epigenetic inheritance. Folate pathway donates methyl groups necessary for cellular methylation and affects different pathways such as DNA methylation, possibly explaining the transgenerational epigenetic inheritance effects. | 0.941 |