Your Input: | |||||
ERLEC1 | Endoplasmic reticulum lectin 1; Probable lectin that binds selectively to improperly folded lumenal proteins. May function in endoplasmic reticulum quality control and endoplasmic reticulum-associated degradation (ERAD) of both non- glycosylated proteins and glycoproteins. (483 aa) | ||||
XBP1 | X-box-binding protein 1, cytoplasmic form; Functions as a transcription factor during endoplasmic reticulum (ER) stress by regulating the unfolded protein response (UPR). Required for cardiac myogenesis and hepatogenesis during embryonic development, and the development of secretory tissues such as exocrine pancreas and salivary gland (By similarity). Involved in terminal differentiation of B lymphocytes to plasma cells and production of immunoglobulins. Modulates the cellular response to ER stress in a PIK3R-dependent manner. Binds to the cis-acting X box present in the promoter regio [...] (261 aa) | ||||
APOB | Apolipoprotein B-100; Apolipoprotein B is a major protein constituent of chylomicrons (apo B-48), LDL (apo B-100) and VLDL (apo B-100). Apo B- 100 functions as a recognition signal for the cellular binding and internalization of LDL particles by the apoB/E receptor. (4563 aa) | ||||
INSIG2 | Insulin-induced gene 2 protein; Mediates feedback control of cholesterol synthesis by controlling SCAP and HMGCR. Functions by blocking the processing of sterol regulatory element-binding proteins (SREBPs). Capable of retaining the SCAP-SREBF2 complex in the ER thus preventing it from escorting SREBPs to the Golgi. Seems to regulate the ubiquitin-mediated proteasomal degradation of HMGCR. (225 aa) | ||||
CANX | Calnexin; Calcium-binding protein that interacts with newly synthesized glycoproteins in the endoplasmic reticulum. It may act in assisting protein assembly and/or in the retention within the ER of unassembled protein subunits. It seems to play a major role in the quality control apparatus of the ER by the retention of incorrectly folded proteins. Associated with partial T-cell antigen receptor complexes that escape the ER of immature thymocytes, it may function as a signaling complex regulating thymocyte maturation. Additionally it may play a role in receptor-mediated endocytosis at t [...] (592 aa) | ||||
APOE | Apolipoprotein E; APOE is an apolipoprotein, a protein associating with lipid particles, that mainly functions in lipoprotein-mediated lipid transport between organs via the plasma and interstitial fluids. APOE is a core component of plasma lipoproteins and is involved in their production, conversion and clearance. Apoliproteins are amphipathic molecules that interact both with lipids of the lipoprotein particle core and the aqueous environment of the plasma. As such, APOE associates with chylomicrons, chylomicron remnants, very low density lipoproteins (VLDL) and intermediate density [...] (317 aa) | ||||
DNAJB1 | DnaJ homolog subfamily B member 1; Interacts with HSP70 and can stimulate its ATPase activity. Stimulates the association between HSC70 and HIP. Negatively regulates heat shock-induced HSF1 transcriptional activity during the attenuation and recovery phase period of the heat shock response. Stimulates ATP hydrolysis and the folding of unfolded proteins mediated by HSPA1A/B (in vitro). (340 aa) | ||||
EIF2S1 | Eukaryotic translation initiation factor 2 subunit 1; Functions in the early steps of protein synthesis by forming a ternary complex with GTP and initiator tRNA. This complex binds to a 40S ribosomal subunit, followed by mRNA binding to form a 43S pre- initiation complex. Junction of the 60S ribosomal subunit to form the 80S initiation complex is preceded by hydrolysis of the GTP bound to eIF-2 and release of an eIF-2-GDP binary complex. In order for eIF-2 to recycle and catalyze another round of initiation, the GDP bound to eIF- 2 must exchange with GTP by way of a reaction catalyzed [...] (315 aa) | ||||
EDEM1 | ER degradation-enhancing alpha-mannosidase-like protein 1; Extracts misfolded glycoproteins, but not glycoproteins undergoing productive folding, from the calnexin cycle. It is directly involved in endoplasmic reticulum-associated degradation (ERAD) and targets misfolded glycoproteins for degradation in an N-glycan- independent manner, probably by forming a complex with SEL1L. It has low mannosidase activity, catalyzing mannose trimming from Man8GlcNAc2 to Man7GlcNAc2. Belongs to the glycosyl hydrolase 47 family. (657 aa) | ||||
DERL1 | Derlin-1; Functional component of endoplasmic reticulum-associated degradation (ERAD) for misfolded lumenal proteins. May act by forming a channel that allows the retrotranslocation of misfolded proteins into the cytosol where they are ubiquitinated and degraded by the proteasome. May mediate the interaction between VCP and the misfolded protein. Also involved in endoplasmic reticulum stress-induced pre-emptive quality control, a mechanism that selectively attenuates the translocation of newly synthesized proteins into the endoplasmic reticulum and reroutes them to the cytosol for prot [...] (251 aa) | ||||
MESD | LRP chaperone MESD; Chaperone specifically assisting the folding of beta- propeller/EGF modules within the family of low-density lipoprotein receptors (LDLRs). Acts as a modulator of the Wnt pathway through chaperoning the coreceptors of the canonical Wnt pathway, LRP5 and LRP6, to the plasma membrane. Essential for specification of embryonic polarity and mesoderm induction. Plays an essential role in neuromuscular junction (NMJ) formation by promoting cell-surface expression of LRP4 (By similarity). May regulate phagocytosis of apoptotic retinal pigment epithelium (RPE) cells (By simi [...] (234 aa) | ||||
FAF2 | FAS-associated factor 2; Plays an important role in endoplasmic reticulum-associated degradation (ERAD) that mediates ubiquitin-dependent degradation of misfolded endoplasmic reticulum proteins. By controlling the steady-state expression of the IGF1R receptor, indirectly regulates the insulin-like growth factor receptor signaling pathway. Involved in inhibition of lipid droplet degradation by binding to phospholipase PNPL2 and inhibiting its activity by promoting dissociation of PNPL2 from its endogenous activator, ABHD5 which inhibits the rate of triacylglycerol hydrolysis. (445 aa) | ||||
DNAJC10 | DnaJ homolog subfamily C member 10; Endoplasmic reticulum disulfide reductase involved both in the correct folding of proteins and degradation of misfolded proteins. Required for efficient folding of proteins in the endoplasmic reticulum by catalyzing the removal of non-native disulfide bonds formed during the folding of proteins, such as LDLR. Also involved in endoplasmic reticulum-associated degradation (ERAD) by reducing incorrect disulfide bonds in misfolded glycoproteins recognized by EDEM1. Interaction with HSPA5 is required its activity, not for the disulfide reductase activity, [...] (793 aa) | ||||
SQLE | Squalene monooxygenase; Catalyzes the stereospecific oxidation of squalene to (S)- 2,3-epoxysqualene, and is considered to be a rate-limiting enzyme in steroid biosynthesis. (574 aa) | ||||
MARCHF4 | E3 ubiquitin-protein ligase MARCHF4; E3 ubiquitin-protein ligase that may mediate ubiquitination of MHC-I and CD4, and promote their subsequent endocytosis and sorting to lysosomes via multivesicular bodies. E3 ubiquitin ligases accept ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfer the ubiquitin to targeted substrates. (410 aa) | ||||
MARCHF6 | E3 ubiquitin-protein ligase MARCHF6; E3 ubiquitin-protein ligase that promotes 'Lys-48'-linked ubiquitination of target proteins, leading to their proteasomal degradation. Promotes ubiquitination of DIO2, leading to its degradation. Promotes ubiquitination of SQLE, leading to its degradation. E3 ubiquitin ligases accept ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfer the ubiquitin to targeted substrates. May cooperate with UBE2G1. (910 aa) | ||||
HMGCR | 3-hydroxy-3-methylglutaryl-coenzyme A reductase; Transmembrane glycoprotein that is the rate-limiting enzyme in cholesterol biosynthesis as well as in the biosynthesis of nonsterol isoprenoids that are essential for normal cell function including ubiquinone and geranylgeranyl proteins. (888 aa) | ||||
AMFR | E3 ubiquitin-protein ligase AMFR; E3 ubiquitin-protein ligase that mediates the polyubiquitination of a number of proteins such as CD3D, CYP3A4, CFTR and APOB for proteasomal degradation. Component of a VCP/p97-AMFR/gp78 complex that participates in the final step of endoplasmic reticulum- associated degradation (ERAD). The VCP/p97-AMFR/gp78 complex is involved in the sterol-accelerated ERAD degradation of HMGCR through binding to the HMGCR-INSIG complex at the ER membrane and initiating ubiquitination of HMGCR. The ubiquitinated HMGCR is then released from the ER by the complex into t [...] (643 aa) | ||||
HSP90B1 | Endoplasmin; Molecular chaperone that functions in the processing and transport of secreted proteins (By similarity). When associated with CNPY3, required for proper folding of Toll-like receptors (By similarity). Functions in endoplasmic reticulum associated degradation (ERAD). Has ATPase activity (By similarity). Belongs to the heat shock protein 90 family. (803 aa) | ||||
PDIA3 | Protein disulfide-isomerase A3; Protein disulfide isomerase family A member 3; Belongs to the protein disulfide isomerase family. (505 aa) | ||||
HSPA4 | Heat shock protein family A member 4; Belongs to the heat shock protein 70 family. (840 aa) | ||||
PCSK9 | Proprotein convertase subtilisin/kexin type 9; Crucial player in the regulation of plasma cholesterol homeostasis. Binds to low-density lipid receptor family members: low density lipoprotein receptor (LDLR), very low density lipoprotein receptor (VLDLR), apolipoprotein E receptor (LRP1/APOER) and apolipoprotein receptor 2 (LRP8/APOER2), and promotes their degradation in intracellular acidic compartments. Acts via a non- proteolytic mechanism to enhance the degradation of the hepatic LDLR through a clathrin LDLRAP1/ARH-mediated pathway. May prevent the recycling of LDLR from endosomes t [...] (692 aa) | ||||
RNF139 | E3 ubiquitin-protein ligase RNF139; E3-ubiquitin ligase; acts as a negative regulator of the cell proliferation through mechanisms involving G2/M arrest and cell death. Required for MHC class I ubiquitination in cells expressing the cytomegalovirus protein US2 before dislocation from the endoplasmic reticulum (ER). Affects SREBP processing by hindering the SREBP/SCAP complex translocation from the ER to the Golgi, thereby reducing SREBF2 target gene expression. Required for INSIG1 ubiquitination. May be required for EIF3 complex ubiquitination. May function as a signaling receptor. (664 aa) | ||||
RETREG1 | Reticulophagy regulator 1; Endoplasmic reticulum-anchored autophagy receptor that mediates ER delivery into lysosomes through sequestration into autophagosomes. Promotes membrane remodeling and ER scission via its membrane bending capacity and targets the fragments into autophagosomes via interaction with ATG8 family proteins. Required for long-term survival of nociceptive and autonomic ganglion neurons. (497 aa) | ||||
EIF2AK3 | Eukaryotic translation initiation factor 2-alpha kinase 3; Metabolic-stress sensing protein kinase that phosphorylates the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2- alpha/EIF2S1) on 'Ser-52' during the unfolded protein response (UPR) and in response to low amino acid availability. Converts phosphorylated eIF-2-alpha/EIF2S1 either in a global protein synthesis inhibitor, leading to a reduced overall utilization of amino acids, or to a translation initiation activator of specific mRNAs, such as the transcriptional activator ATF4, and hence allowing ATF4-mediated [...] (1116 aa) | ||||
OS9 | Protein OS-9; Lectin which functions in endoplasmic reticulum (ER) quality control and ER-associated degradation (ERAD). May bind terminally misfolded non-glycosylated proteins as well as improperly folded glycoproteins, retain them in the ER, and possibly transfer them to the ubiquitination machinery and promote their degradation. Possible targets include TRPV4. (667 aa) | ||||
CALR | Calreticulin; Calcium-binding chaperone that promotes folding, oligomeric assembly and quality control in the endoplasmic reticulum (ER) via the calreticulin/calnexin cycle. This lectin interacts transiently with almost all of the monoglucosylated glycoproteins that are synthesized in the ER. Interacts with the DNA-binding domain of NR3C1 and mediates its nuclear export. Involved in maternal gene expression regulation. May participate in oocyte maturation via the regulation of calcium homeostasis (By similarity); Belongs to the calreticulin family. (417 aa) | ||||
HSPA5 | Endoplasmic reticulum chaperone BiP; Endoplasmic reticulum chaperone that plays a key role in protein folding and quality control in the endoplasmic reticulum lumen. Involved in the correct folding of proteins and degradation of misfolded proteins via its interaction with DNAJC10/ERdj5, probably to facilitate the release of DNAJC10/ERdj5 from its substrate (By similarity). Acts as a key repressor of the ERN1/IRE1-mediated unfolded protein response (UPR). In the unstressed endoplasmic reticulum, recruited by DNAJB9/ERdj4 to the luminal region of ERN1/IRE1, leading to disrupt the dimeriz [...] (654 aa) | ||||
HSP90AA1 | Heat shock protein HSP 90-alpha; Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. Engages with a ra [...] (854 aa) | ||||
SEL1L | Protein sel-1 homolog 1; Plays a role in the endoplasmic reticulum quality control (ERQC) system also called ER-associated degradation (ERAD) involved in ubiquitin-dependent degradation of misfolded endoplasmic reticulum proteins. Enhances SYVN1 stability. Plays a role in LPL maturation and secretion. Required for normal differentiation of the pancreas epithelium, and for normal exocrine function and survival of pancreatic cells. May play a role in Notch signaling. (794 aa) | ||||
SEC62 | Translocation protein SEC62; Mediates post-translational transport of precursor polypeptides across endoplasmic reticulum (ER). Proposed to act as a targeting receptor for small presecretory proteins containing short and apolar signal peptides. Targets and properly positions newly synthesized presecretory proteins into the SEC61 channel-forming translocon complex, triggering channel opening for polypeptide translocation to the ER lumen. (399 aa) | ||||
UBE2G2 | Ubiquitin-conjugating enzyme E2 G2; Accepts ubiquitin from the E1 complex and catalyzes its covalent attachment to other proteins. In vitro catalyzes 'Lys-48'- linked polyubiquitination. Involved in endoplasmic reticulum-associated degradation (ERAD). (165 aa) | ||||
UBA1 | Ubiquitin-like modifier-activating enzyme 1; Catalyzes the first step in ubiquitin conjugation to mark cellular proteins for degradation through the ubiquitin-proteasome system. Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a ubiquitin-E1 thioester and free AMP. Essential for the formation of radiation-induced foci, timely DNA repair and for response to replication stress. Promotes the recruitment of TP53BP1 and BRCA1 at DNA damage sites. (1058 aa) | ||||
INSIG1 | Insulin-induced gene 1 protein; Mediates feedback control of cholesterol synthesis by controlling SCAP and HMGCR. Functions by blocking the processing of sterol regulatory element-binding proteins (SREBPs). Capable of retaining the SCAP-SREBF2 complex in the ER thus preventing it from escorting SREBPs to the Golgi. Initiates the sterol-mediated ubiquitin- mediated endoplasmic reticulum-associated degradation (ERAD) of HMGCR via recruitment of the reductase to the ubiquitin ligase, AMFR/gp78. May play a role in growth and differentiation of tissues involved in metabolic control. May pla [...] (277 aa) | ||||
MYLIP | E3 ubiquitin-protein ligase MYLIP; E3 ubiquitin-protein ligase that mediates ubiquitination and subsequent proteasomal degradation of myosin regulatory light chain (MRLC), LDLR, VLDLR and LRP8. Activity depends on E2 enzymes of the UBE2D family. Proteasomal degradation of MRLC leads to inhibit neurite outgrowth in presence of NGF by counteracting the stabilization of MRLC by saposin-like protein (CNPY2/MSAP) and reducing CNPY2-stimulated neurite outgrowth. Acts as a sterol-dependent inhibitor of cellular cholesterol uptake by mediating ubiquitination and subsequent degradation of LDLR. (445 aa) | ||||
VCP | Transitional endoplasmic reticulum ATPase; Necessary for the fragmentation of Golgi stacks during mitosis and for their reassembly after mitosis. Involved in the formation of the transitional endoplasmic reticulum (tER). The transfer of membranes from the endoplasmic reticulum to the Golgi apparatus occurs via 50-70 nm transition vesicles which derive from part-rough, part-smooth transitional elements of the endoplasmic reticulum (tER). Vesicle budding from the tER is an ATP-dependent process. The ternary complex containing UFD1, VCP and NPLOC4 binds ubiquitinated proteins and is neces [...] (806 aa) | ||||
SREBF2 | Processed sterol regulatory element-binding protein 2; Transcriptional activator required for lipid homeostasis. Regulates transcription of the LDL receptor gene as well as the cholesterol and to a lesser degree the fatty acid synthesis pathway (By similarity). Binds the sterol regulatory element 1 (SRE-1) (5'- ATCACCCCAC-3') found in the flanking region of the LDRL and HMG-CoA synthase genes. (1141 aa) | ||||
ATF6 | Processed cyclic AMP-dependent transcription factor ATF-6 alpha; Transmembrane glycoprotein of the endoplasmic reticulum that functions as a transcription activator and initiates the unfolded protein response (UPR) during endoplasmic reticulum stress. Cleaved upon ER stress, the N-terminal processed cyclic AMP-dependent transcription factor ATF-6 alpha translocates to the nucleus where it activates transcription of genes involved in the UPR. Binds DNA on the 5'-CCAC[GA]-3'half of the ER stress response element (ERSE) (5'-CCAAT- N(9)-CCAC[GA]-3') and of ERSE II (5'-ATTGG-N-CCACG-3'). Bi [...] (670 aa) | ||||
HSP90AB1 | Heat shock protein HSP 90-beta; Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co- chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. Engages with a range of client protein classes via its interact [...] (724 aa) | ||||
MAN1B1 | Endoplasmic reticulum mannosyl-oligosaccharide 1,2-alpha-mannosidase; Involved in glycoprotein quality control targeting of misfolded glycoproteins for degradation. It primarily trims a single alpha-1,2-linked mannose residue from Man(9)GlcNAc(2) to produce Man(8)GlcNAc(2), but at high enzyme concentrations, as found in the ER quality control compartment (ERQC), it further trims the carbohydrates to Man(5-6)GlcNAc(2); Belongs to the glycosyl hydrolase 47 family. (699 aa) | ||||
LDLRAP1 | Low density lipoprotein receptor adapter protein 1; Adapter protein (clathrin-associated sorting protein (CLASP)) required for efficient endocytosis of the LDL receptor (LDLR) in polarized cells such as hepatocytes and lymphocytes, but not in non- polarized cells (fibroblasts). May be required for LDL binding and internalization but not for receptor clustering in coated pits. May facilitate the endocytocis of LDLR and LDLR-LDL complexes from coated pits by stabilizing the interaction between the receptor and the structural components of the pits. May also be involved in the internaliza [...] (308 aa) | ||||
TXN | Thioredoxin; Participates in various redox reactions through the reversible oxidation of its active center dithiol to a disulfide and catalyzes dithiol-disulfide exchange reactions. Plays a role in the reversible S- nitrosylation of cysteine residues in target proteins, and thereby contributes to the response to intracellular nitric oxide. Nitrosylates the active site Cys of CASP3 in response to nitric oxide (NO), and thereby inhibits caspase-3 activity. Induces the FOS/JUN AP-1 DNA-binding activity in ionizing radiation (IR) cells through its oxidation/reduction status and stimulates [...] (105 aa) | ||||
RNF5 | E3 ubiquitin-protein ligase RNF5; Has E2-dependent E3 ubiquitin-protein ligase activity. May function together with E2 ubiquitin-conjugating enzymes UBE2D1/UBCH5A and UBE2D2/UBC4. Mediates ubiquitination of PXN/paxillin and Salmonella type III secreted protein sopA. May be involved in regulation of cell motility and localization of PXN/paxillin. Mediates the 'Lys-63'-linked polyubiquitination of JKAMP thereby regulating JKAMP function by decreasing its association with components of the proteasome and ERAD; the ubiquitination appears to involve E2 ubiquitin-conjugating enzyme UBE2N. Me [...] (180 aa) | ||||
SYVN1 | E3 ubiquitin-protein ligase synoviolin; Acts as an E3 ubiquitin-protein ligase which accepts ubiquitin specifically from endoplasmic reticulum-associated UBC7 E2 ligase and transfers it to substrates, promoting their degradation. Component of the endoplasmic reticulum quality control (ERQC) system also called ER- associated degradation (ERAD) involved in ubiquitin-dependent degradation of misfolded endoplasmic reticulum proteins. Also promotes the degradation of normal but naturally short-lived proteins such as SGK. Protects cells from ER stress-induced apoptosis. Protects neurons from [...] (617 aa) | ||||
RTN3 | Reticulon-3; May be involved in membrane trafficking in the early secretory pathway. Inhibits BACE1 activity and amyloid precursor protein processing. May induce caspase-8 cascade and apoptosis. May favor BCL2 translocation to the mitochondria upon endoplasmic reticulum stress. In case of enteroviruses infection, RTN3 may be involved in the viral replication or pathogenesis. Induces the formation of endoplasmic reticulum tubules. (1032 aa) | ||||
VLDLR | Very low-density lipoprotein receptor; Binds VLDL and transports it into cells by endocytosis. In order to be internalized, the receptor-ligand complexes must first cluster into clathrin-coated pits. Binding to Reelin induces tyrosine phosphorylation of Dab1 and modulation of Tau phosphorylation (By similarity). (873 aa) | ||||
RNF20 | E3 ubiquitin-protein ligase BRE1A; Component of the RNF20/40 E3 ubiquitin-protein ligase complex that mediates monoubiquitination of 'Lys-120' of histone H2B (H2BK120ub1). H2BK120ub1 gives a specific tag for epigenetic transcriptional activation and is also prerequisite for histone H3 'Lys-4' and 'Lys-79' methylation (H3K4me and H3K79me, respectively). It thereby plays a central role inb histone code and gene regulation. The RNF20/40 complex forms a H2B ubiquitin ligase complex in cooperation with the E2 enzyme UBE2A or UBE2B; reports about the cooperation with UBE2E1/UBCH are contradi [...] (975 aa) | ||||
FOXRED2 | FAD-dependent oxidoreductase domain-containing protein 2; Probable flavoprotein which may function in endoplasmic reticulum associated degradation (ERAD). May bind non-native proteins in the endoplasmic reticulum and target them to the ubiquitination machinery for subsequent degradation. (684 aa) | ||||
BCL2 | Apoptosis regulator Bcl-2; Suppresses apoptosis in a variety of cell systems including factor-dependent lymphohematopoietic and neural cells. Regulates cell death by controlling the mitochondrial membrane permeability. Appears to function in a feedback loop system with caspases. Inhibits caspase activity either by preventing the release of cytochrome c from the mitochondria and/or by binding to the apoptosis-activating factor (APAF-1). May attenuate inflammation by impairing NLRP1-inflammasome activation, hence CASP1 activation and IL1B release. (239 aa) | ||||
ATL3 | Atlastin-3; GTPase tethering membranes through formation of trans- homooligomers and mediating homotypic fusion of endoplasmic reticulum membranes. Functions in endoplasmic reticulum tubular network biogenesis. (541 aa) | ||||
UBE2J2 | Ubiquitin-conjugating enzyme E2 J2; Catalyzes the covalent attachment of ubiquitin to other proteins. Seems to function in the selective degradation of misfolded membrane proteins from the endoplasmic reticulum (ERAD). Belongs to the ubiquitin-conjugating enzyme family. (275 aa) | ||||
TEX264 | Testis-expressed protein 264; Major reticulophagy (also called ER-phagy) receptor that acts independently of other candidate reticulophagy receptors to remodel subdomains of the endoplasmic reticulum into autophagosomes upon nutrient stress, which then fuse with lysosomes for endoplasmic reticulum turnover. The ATG8- containing isolation membrane (IM) cradles a tubular segment of TEX264- positive ER near a three-way junction, allowing the formation of a synapse of 2 juxtaposed membranes with trans interaction between the TEX264 and ATG8 proteins. Expansion of the IM would extend the ca [...] (313 aa) | ||||
ERN1 | Serine/threonine-protein kinase/endoribonuclease IRE1; Serine/threonine-protein kinase and endoribonuclease that acts as a key sensor for the endoplasmic reticulum unfolded protein response (UPR). In unstressed cells, the endoplasmic reticulum luminal domain is maintained in its inactive monomeric state by binding to the endoplasmic reticulum chaperone HSPA5/BiP. Accumulation of misfolded protein in the endoplasmic reticulum causes release of HSPA5/BiP, allowing the luminal domain to homodimerize, promoting autophosphorylation of the kinase domain and subsequent activation of the endor [...] (977 aa) | ||||
CCPG1 | Cell cycle progression protein 1; Acts as an assembly platform for Rho protein signaling complexes. Limits guanine nucleotide exchange activity of MCF2L toward RHOA, which results in an inhibition of both its transcriptional activation ability and its transforming activity. Does not inhibit activity of MCF2L toward CDC42, or activity of MCF2 toward either RHOA or CDC42 (By similarity). May be involved in cell cycle regulation. Belongs to the CCPG1 family. (807 aa) | ||||
RNF145 | RING finger protein 145; E3 ubiquitin ligase that catalyzes the direct transfer of ubiquitin from E2 ubiquitin-conjugating enzyme to a specific substrate. In response to bacterial infection, negatively regulates the phagocyte oxidative burst by controlling the turnover of the NADPH oxidase complex subunits. Promotes monoubiquitination of CYBA and 'Lys-48'- linked polyubiquitination and degradation of CYBB NADPH oxidase catalytic subunits, both essential for the generation of antimicrobial reactive oxygen species. Involved in the maintenance of cholesterol homeostasis. In response to hi [...] (693 aa) | ||||
UBE2J1 | Ubiquitin-conjugating enzyme E2 J1; Catalyzes the covalent attachment of ubiquitin to other proteins. Functions in the selective degradation of misfolded membrane proteins from the endoplasmic reticulum (ERAD). Belongs to the ubiquitin-conjugating enzyme family. (318 aa) | ||||
LDLR | Low-density lipoprotein receptor; Binds LDL, the major cholesterol-carrying lipoprotein of plasma, and transports it into cells by endocytosis. In order to be internalized, the receptor-ligand complexes must first cluster into clathrin-coated pits. (Microbial infection) Acts as a receptor for Vesicular stomatitis virus; Belongs to the LDLR family. (860 aa) | ||||
FBXW7 | F-box/WD repeat-containing protein 7; Substrate recognition component of a SCF (SKP1-CUL1-F-box protein) E3 ubiquitin-protein ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. Recognizes and binds phosphorylated sites/phosphodegrons within target proteins and thereafter bring them to the SCF complex for ubiquitination. Identified substrates include cyclin-E (CCNE1 or CCNE2), DISC1, JUN, MYC, NOTCH1 released notch intracellular domain (NICD), NOTCH2, MCL1, and probably PSEN1. Acts as a negative regulator of JNK signaling by bindi [...] (707 aa) | ||||
PDIA4 | Protein disulfide-isomerase A4; Protein disulfide isomerase family A member 4; Belongs to the protein disulfide isomerase family. (645 aa) |