Your Input: | |||||
CHRND | Acetylcholine receptor subunit delta; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. Belongs to the ligand-gated ion channel (TC 1.A.9) family. Acetylcholine receptor (TC 1.A.9.1) subfamily. Delta/CHRND sub- subfamily. (517 aa) | ||||
CHRNA1 | Acetylcholine receptor subunit alpha; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. (482 aa) | ||||
RAPSN | 43 kDa receptor-associated protein of the synapse; Postsynaptic protein required for clustering of nicotinic acetylcholine receptors (nAChRs) at the neuromuscular junction. It may link the receptor to the underlying postsynaptic cytoskeleton, possibly by direct association with actin or spectrin. (412 aa) | ||||
ECEL1 | Endothelin-converting enzyme-like 1; May contribute to the degradation of peptide hormones and be involved in the inactivation of neuronal peptides. (775 aa) | ||||
CHRNB1 | Acetylcholine receptor subunit beta; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. Belongs to the ligand-gated ion channel (TC 1.A.9) family. Acetylcholine receptor (TC 1.A.9.1) subfamily. Beta-1/CHRNB1 sub- subfamily. (501 aa) | ||||
CHST14 | Carbohydrate sulfotransferase 14; Catalyzes the transfer of sulfate to position 4 of the N- acetylgalactosamine (GalNAc) residue of dermatan sulfate. Plays a pivotal role in the formation of 4-0-sulfated IdoA blocks in dermatan sulfate. Transfers sulfate to the C-4 hydroxyl of beta1,4-linked GalNAc that is substituted with an alpha-linked iduronic acid (IdoUA) at the C-3 hydroxyl. Transfers sulfate more efficiently to GalNAc residues in -IdoUA-GalNAc-IdoUA- than in -GlcUA-GalNAc-GlcUA-sequences. Has preference for partially desulfated dermatan sulfate. Addition of sulfate to GalNAc may [...] (376 aa) | ||||
GLE1 | Nucleoporin GLE1; Required for the export of mRNAs containing poly(A) tails from the nucleus into the cytoplasm. May be involved in the terminal step of the mRNA transport through the nuclear pore complex (NPC). (698 aa) | ||||
PLEC | Plectin; Interlinks intermediate filaments with microtubules and microfilaments and anchors intermediate filaments to desmosomes or hemidesmosomes. Could also bind muscle proteins such as actin to membrane complexes in muscle. May be involved not only in the filaments network, but also in the regulation of their dynamics. Structural component of muscle. Isoform 9 plays a major role in the maintenance of myofiber integrity. (4684 aa) | ||||
VPS33B | Vacuolar protein sorting-associated protein 33B; May play a role in vesicle-mediated protein trafficking to lysosomal compartments and in membrane docking/fusion reactions of late endosomes/lysosomes. Mediates phagolysosomal fusion in macrophages. Proposed to be involved in endosomal maturation implicating VIPAS39. In epithelial cells, the VPS33B:VIPAS39 complex may play a role in the apical recycling pathway and in the maintenance of the apical-basolateral polarity. Seems to be involved in the sorting of specific cargos from the trans-Golgi network to alpha-granule-destined multivesic [...] (617 aa) | ||||
DNAH8 | Dynein heavy chain 8, axonemal; Force generating protein of respiratory cilia. Produces force towards the minus ends of microtubules. Dynein has ATPase activity; the force-producing power stroke is thought to occur on release of ADP. Involved in sperm motility; implicated in sperm flagellar assembly (By similarity). (4707 aa) | ||||
UBA1 | Ubiquitin-like modifier-activating enzyme 1; Catalyzes the first step in ubiquitin conjugation to mark cellular proteins for degradation through the ubiquitin-proteasome system. Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a ubiquitin-E1 thioester and free AMP. Essential for the formation of radiation-induced foci, timely DNA repair and for response to replication stress. Promotes the recruitment of TP53BP1 and BRCA1 at DNA damage sites. (1058 aa) | ||||
DOK7 | Protein Dok-7; Probable muscle-intrinsic activator of MUSK that plays an essential role in neuromuscular synaptogenesis. Acts in aneural activation of MUSK and subsequent acetylcholine receptor (AchR) clustering in myotubes. Induces autophosphorylation of MUSK. (504 aa) | ||||
MYH7 | Myosin-7; Myosins are actin-based motor molecules with ATPase activity essential for muscle contraction. Forms regular bipolar thick filaments that, together with actin thin filaments, constitute the fundamental contractile unit of skeletal and cardiac muscle. (1935 aa) | ||||
GFPT1 | Glutamine--fructose-6-phosphate aminotransferase [isomerizing] 1; Controls the flux of glucose into the hexosamine pathway. Most likely involved in regulating the availability of precursors for N- and O-linked glycosylation of proteins. Regulates the circadian expression of clock genes ARNTL/BMAL1 and CRY1. (699 aa) | ||||
MUSK | Muscle, skeletal receptor tyrosine-protein kinase; Receptor tyrosine kinase which plays a central role in the formation and the maintenance of the neuromuscular junction (NMJ), the synapse between the motor neuron and the skeletal muscle. Recruitment of AGRIN by LRP4 to the MUSK signaling complex induces phosphorylation and activation of MUSK, the kinase of the complex. The activation of MUSK in myotubes regulates the formation of NMJs through the regulation of different processes including the specific expression of genes in subsynaptic nuclei, the reorganization of the actin cytoskel [...] (869 aa) | ||||
AGRN | Agrin C-terminal 110 kDa subunit; [Isoform 1]: heparan sulfate basal lamina glycoprotein that plays a central role in the formation and the maintenance of the neuromuscular junction (NMJ) and directs key events in postsynaptic differentiation. Component of the AGRN-LRP4 receptor complex that induces the phosphorylation and activation of MUSK. The activation of MUSK in myotubes induces the formation of NMJ by regulating different processes including the transcription of specific genes and the clustering of AChR in the postsynaptic membrane. Calcium ions are required for maximal AChR clu [...] (2045 aa) | ||||
TNNT3 | Troponin T, fast skeletal muscle; Troponin T is the tropomyosin-binding subunit of troponin, the thin filament regulatory complex which confers calcium-sensitivity to striated muscle actomyosin ATPase activity. (261 aa) | ||||
TNNI2 | Troponin I, fast skeletal muscle; Troponin I is the inhibitory subunit of troponin, the thin filament regulatory complex which confers calcium-sensitivity to striated muscle actomyosin ATPase activity. (182 aa) | ||||
COLQ | Acetylcholinesterase collagenic tail peptide; Anchors the catalytic subunits of asymmetric AChE to the synaptic basal lamina; Belongs to the COLQ family. (455 aa) | ||||
MYH8 | Myosin-8; Muscle contraction. (1937 aa) | ||||
DPAGT1 | UDP-N-acetylglucosamine--dolichyl-phosphate N-acetylglucosaminephosphotransferase; Catalyzes the initial step of dolichol-linked oligosaccharide biosynthesis in N-linked protein glycosylation pathway: transfers GlcNAc-1-P from UDP-GlcNAc onto the carrier lipid dolichyl phosphate (P-dolichol), yielding GlcNAc-P-P-dolichol. (408 aa) | ||||
SCN4A | Sodium channel protein type 4 subunit alpha; Pore-forming subunit of a voltage-gated sodium channel complex through which Na(+) ions pass in accordance with their electrochemical gradient. Alternates between resting, activated and inactivated states. Required for normal muscle fiber excitability, normal muscle contraction and relaxation cycles, and constant muscle strength in the presence of fluctuating K(+) levels. Belongs to the sodium channel (TC 1.A.1.10) family. Nav1.4/SCN4A subfamily. (1836 aa) | ||||
MYBPC1 | Myosin-binding protein C, slow-type; Thick filament-associated protein located in the crossbridge region of vertebrate striated muscle a bands. In vitro it binds MHC, F- actin and native thin filaments, and modifies the activity of actin- activated myosin ATPase. It may modulate muscle contraction or may play a more structural role; Belongs to the immunoglobulin superfamily. MyBP family. (1173 aa) | ||||
PIEZO2 | Piezo-type mechanosensitive ion channel component 2; Component of a mechanosensitive channel required for rapidly adapting mechanically activated (MA) currents. Required for Merkel-cell mechanotransduction. Plays a major role in light-touch mechanosensation. (2752 aa) | ||||
FBN2 | Fibrillin-2 C-terminal peptide; [Fibrillin-2]: Fibrillins are structural components of 10-12 nm extracellular calcium-binding microfibrils, which occur either in association with elastin or in elastin-free bundles. Fibrillin-2- containing microfibrils regulate the early process of elastic fiber assembly. Regulates osteoblast maturation by controlling TGF-beta bioavailability and calibrating TGF-beta and BMP levels, respectively. Belongs to the fibrillin family. (2912 aa) | ||||
VIPAS39 | Spermatogenesis-defective protein 39 homolog; Proposed to be involved in endosomal maturation implicating in part VPS33B. In epithelial cells, the VPS33B:VIPAS39 complex may play a role in the apical RAB11A-dependent recycling pathway and in the maintenance of the apical-basolateral polarity. May play a role in lysosomal trafficking, probably via association with the core HOPS complex in a discrete population of endosomes; the functions seems to be indepenedent of VPS33B. May play a role in vesicular trafficking during spermatogenesis (By similarity). May be involved in direct or indir [...] (493 aa) | ||||
MYH3 | Myosin-3; Muscle contraction. (1940 aa) | ||||
TPM2 | Tropomyosin beta chain; Binds to actin filaments in muscle and non-muscle cells. Plays a central role, in association with the troponin complex, in the calcium dependent regulation of vertebrate striated muscle contraction. Smooth muscle contraction is regulated by interaction with caldesmon. In non-muscle cells is implicated in stabilizing cytoskeleton actin filaments. The non-muscle isoform may have a role in agonist-mediated receptor internalization. (284 aa) | ||||
CHRNE | Acetylcholine receptor subunit epsilon; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. (493 aa) | ||||
CHRNG | Acetylcholine receptor subunit gamma; After binding acetylcholine, the AChR responds by an extensive change in conformation that affects all subunits and leads to opening of an ion-conducting channel across the plasma membrane. (517 aa) |