STRINGSTRING
RPAP3 RPAP3 PDRG1 PDRG1 RAB40AL RAB40AL POLR2C POLR2C POLR2I POLR2I TWISTNB TWISTNB RPA3 RPA3 SLC7A6OS SLC7A6OS POLR2D POLR2D POLR2J POLR2J POLR3K POLR3K POLR2G POLR2G RPAP1 RPAP1 RTP1 RTP1 RUVBL1 RUVBL1 POLR2L POLR2L HSP90AA1 HSP90AA1 UXT UXT POLR2K POLR2K PASK PASK PFDN2 PFDN2 HSP90AB1 HSP90AB1 GPN2 GPN2 POLR2B POLR2B PFDN6 PFDN6 POLR3D POLR3D XPO1 XPO1 POLR2F POLR2F POLR2H POLR2H GPN3 GPN3 POLR1B POLR1B POLR2A POLR2A POLI POLI RPS5 RPS5 RUVBL2 RUVBL2 RPAP2 RPAP2 POLR2E POLR2E TENT4A TENT4A PHGDH PHGDH POLR1C POLR1C
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
RPAP3RNA polymerase II-associated protein 3; Forms an interface between the RNA polymerase II enzyme and chaperone/scaffolding protein, suggesting that it is required to connect RNA polymerase II to regulators of protein complex formation. Belongs to the RPAP3 family. (665 aa)
PDRG1P53 and DNA damage-regulated protein 1; May play a role in chaperone-mediated protein folding. (133 aa)
RAB40ALRas-related protein Rab-40A-like; May be a substrate-recognition component of a SCF-like ECS (Elongin-Cullin-SOCS-box protein) E3 ubiquitin ligase complex which mediates the ubiquitination and subsequent proteasomal degradation of target proteins; Belongs to the small GTPase superfamily. Rab family. (278 aa)
POLR2CDNA-directed RNA polymerase II subunit RPB3; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB3 is part of the core element with the central large cleft and the clamp element that moves to open and close the cleft (By similarity). (275 aa)
POLR2IDNA-directed RNA polymerase II subunit RPB9; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB9 is part of the upper jaw surrounding the central large cleft and thought to grab the incoming DNA template (By similarity). (125 aa)
TWISTNBDNA-directed RNA polymerase I subunit RPA43; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase I which synthesizes ribosomal RNA precursors. Through its association with RRN3/TIF-IA may be involved in recruitment of Pol I to rDNA promoters; Belongs to the eukaryotic RPA43 RNA polymerase subunit family. (338 aa)
RPA3Replication protein A 14 kDa subunit; As part of the heterotrimeric replication protein A complex (RPA/RP-A), binds and stabilizes single-stranded DNA intermediates that form during DNA replication or upon DNA stress. It prevents their reannealing and in parallel, recruits and activates different proteins and complexes involved in DNA metabolism. Thereby, it plays an essential role both in DNA replication and the cellular response to DNA damage. In the cellular response to DNA damage, the RPA complex controls DNA repair and DNA damage checkpoint activation. Through recruitment of ATRIP [...] (121 aa)
SLC7A6OSProbable RNA polymerase II nuclear localization protein SLC7A6OS; Directs RNA polymerase II nuclear import. (309 aa)
POLR2DDNA-directed RNA polymerase II subunit RPB4; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB4 is part of a subcomplex with RPB7 that binds to a pocket formed by RPB1, RPB2 and RPB6 at the base of the clamp element. The RBP4-RPB7 subcomplex seems [...] (142 aa)
POLR2JDNA-directed RNA polymerase II subunit RPB11-a; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB11 is part of the core element with the central large cleft (By similarity). (117 aa)
POLR3KDNA-directed RNA polymerase III subunit RPC10; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase III which synthesizes small RNAs, such as 5S rRNA and tRNAs. Plays a key role in sensing and limiting infection by intracellular bacteria and DNA viruses. Acts as nuclear and cytosolic DNA sensor involved in innate immune response. Can sense non- self dsDNA that serves as template for transcription into dsRNA. The non-self RNA polymerase III transcripts, such as Epstein-Barr virus- [...] (108 aa)
POLR2GDNA-directed RNA polymerase II subunit RPB7; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB7 is part of a subcomplex with RPB4 that binds to a pocket formed by RPB1, RPB2 and RPB6 at the base of the clamp element. The RBP4-RPB7 subcomplex seems [...] (172 aa)
RPAP1RNA polymerase II-associated protein 1; Forms an interface between the RNA polymerase II enzyme and chaperone/scaffolding protein, suggesting that it is required to connect RNA polymerase II to regulators of protein complex formation. Required for interaction of the RNA polymerase II complex with acetylated histone H3; Belongs to the RPAP1 family. (1393 aa)
RTP1Receptor-transporting protein 1; Specifically promotes functional cell surface expression of olfactory receptors, but not of other GPCRs; Belongs to the TMEM7 family. (263 aa)
RUVBL1RuvB-like 1; Possesses single-stranded DNA-stimulated ATPase and ATP- dependent DNA helicase (3' to 5') activity; hexamerization is thought to be critical for ATP hydrolysis and adjacent subunits in the ring- like structure contribute to the ATPase activity. Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome-DNA interactions and promote interaction of the modified histones with other proteins which positively reg [...] (456 aa)
POLR2LDNA-directed RNA polymerases I, II, and III subunit RPABC5; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non- coding RNAs, and a small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, POLR2L/RBP10 is part of [...] (67 aa)
HSP90AA1Heat shock protein HSP 90-alpha; Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity which is essential for its chaperone activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. Engages with a ra [...] (854 aa)
UXTProtein UXT; Involved in gene transcription regulation. Acts in concert with the corepressor URI1 to regulate androgen receptor AR-mediated transcription. Together with URI1, associates with chromatin to the NKX3-1 promoter region. Negatively regulates the transcriptional activity of the estrogen receptor ESR1 by inducing its translocation into the cytoplasm. May act as nuclear chaperone that facilitates the formation of the NF-kappa-B enhanceosome and thus positively regulates NF-kappa-B transcription activity. Potential component of mitochondrial-associated LRPPRC, a multidomain orga [...] (169 aa)
POLR2KDNA-directed RNA polymerases I, II, and III subunit RPABC4; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non- coding RNAs, and a small RNAs, such as 5S rRNA and tRNAs, respectively. (58 aa)
PASKPAS domain-containing serine/threonine-protein kinase; Serine/threonine-protein kinase involved in energy homeostasis and protein translation. Phosphorylates EEF1A1, GYS1, PDX1 and RPS6. Probably plays a role under changing environmental conditions (oxygen, glucose, nutrition), rather than under standard conditions. Acts as a sensor involved in energy homeostasis: regulates glycogen synthase synthesis by mediating phosphorylation of GYS1, leading to GYS1 inactivation. May be involved in glucose-stimulated insulin production in pancreas and regulation of glucagon secretion by glucose in [...] (1330 aa)
PFDN2Prefoldin subunit 2; Binds specifically to cytosolic chaperonin (c-CPN) and transfers target proteins to it. Binds to nascent polypeptide chain and promotes folding in an environment in which there are many competing pathways for nonnative proteins; Belongs to the prefoldin subunit beta family. (154 aa)
HSP90AB1Heat shock protein HSP 90-beta; Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co- chaperones that modulate its substrate recognition, ATPase cycle and chaperone function. Engages with a range of client protein classes via its interact [...] (724 aa)
GPN2GPN-loop GTPase 2; Small GTPase required for proper localization of RNA polymerase II and III (RNAPII and RNAPIII). May act at an RNAP assembly step prior to nuclear import; Belongs to the GPN-loop GTPase family. (310 aa)
POLR2BDNA-directed RNA polymerase II subunit RPB2; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Second largest component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Proposed to contribute to the polymerase catalytic activity and forms the polymerase active center together with the largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB2 is [...] (1174 aa)
PFDN6Prefoldin subunit 6; Binds specifically to cytosolic chaperonin (c-CPN) and transfers target proteins to it. Binds to nascent polypeptide chain and promotes folding in an environment in which there are many competing pathways for nonnative proteins; Belongs to the prefoldin subunit beta family. (129 aa)
POLR3DDNA-directed RNA polymerase III subunit RPC4; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Specific peripheric component of RNA polymerase III which synthesizes small RNAs, such as 5S rRNA and tRNAs. Plays a key role in sensing and limiting infection by intracellular bacteria and DNA viruses. Acts as nuclear and cytosolic DNA sensor involved in innate immune response. Can sense non-self dsDNA that serves as template for transcription into dsRNA. The non-self RNA polymerase III transcripts, such as Ep [...] (398 aa)
XPO1Exportin-1; Mediates the nuclear export of cellular proteins (cargos) bearing a leucine-rich nuclear export signal (NES) and of RNAs. In the nucleus, in association with RANBP3, binds cooperatively to the NES on its target protein and to the GTPase RAN in its active GTP-bound form (Ran-GTP). Docking of this complex to the nuclear pore complex (NPC) is mediated through binding to nucleoporins. Upon transit of a nuclear export complex into the cytoplasm, disassembling of the complex and hydrolysis of Ran-GTP to Ran-GDP (induced by RANBP1 and RANGAP1, respectively) cause release of the ca [...] (1071 aa)
POLR2FDNA-directed RNA polymerases I, II, and III subunit RPABC2; DNA-dependent RNA polymerases catalyze the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II, and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non- coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, POLR2F/RPB6 is part of th [...] (158 aa)
POLR2HDNA-directed RNA polymerases I, II, and III subunit RPABC3; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non- coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. Belongs to the eukaryotic RPB8 RNA polymerase subunit family. (175 aa)
GPN3GPN-loop GTPase 3; Small GTPase required for proper localization of RNA polymerase II (RNAPII). May act at an RNAP assembly step prior to nuclear import; Belongs to the GPN-loop GTPase family. (323 aa)
POLR1BDNA-directed RNA polymerase I subunit RPA2; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Second largest core component of RNA polymerase I which synthesizes ribosomal RNA precursors. Proposed to contribute to the polymerase catalytic activity and forms the polymerase active center together with the largest subunit. Pol I is composed of mobile elements and RPA2 is part of the core element with the central large cleft and probably a clamp element that moves to open and close the cleft (By similarity). (1173 aa)
POLR2ADNA-directed RNA polymerase II subunit RPB1; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Largest and catalytic component of RNA polymerase II which synthesizes mRNA precursors and many functional non-coding RNAs. Forms the polymerase active center together with the second largest subunit. Pol II is the central component of the basal RNA polymerase II transcription machinery. It is composed of mobile elements that move relative to each other. RPB1 is part of the core element with the central large cl [...] (566 aa)
POLIDNA polymerase iota; Error-prone DNA polymerase specifically involved in DNA repair. Plays an important role in translesion synthesis, where the normal high-fidelity DNA polymerases cannot proceed and DNA synthesis stalls. Favors Hoogsteen base-pairing in the active site. Inserts the correct base with high-fidelity opposite an adenosine template. Exhibits low fidelity and efficiency opposite a thymidine template, where it will preferentially insert guanosine. May play a role in hypermutation of immunogobulin genes. Forms a Schiff base with 5'-deoxyribose phosphate at abasic sites, but [...] (740 aa)
RPS540S ribosomal protein S5, N-terminally processed; Ribosomal protein S5; Belongs to the universal ribosomal protein uS7 family. (204 aa)
RUVBL2RuvB-like 2; Possesses single-stranded DNA-stimulated ATPase and ATP- dependent DNA helicase (5' to 3') activity; hexamerization is thought to be critical for ATP hydrolysis and adjacent subunits in the ring- like structure contribute to the ATPase activity. Component of the NuA4 histone acetyltransferase complex which is involved in transcriptional activation of select genes principally by acetylation of nucleosomal histones H4 and H2A. This modification may both alter nucleosome -DNA interactions and promote interaction of the modified histones with other proteins which positively re [...] (463 aa)
RPAP2Putative RNA polymerase II subunit B1 CTD phosphatase RPAP2; Protein phosphatase that displays CTD phosphatase activity and regulates transcription of snRNA genes. Recognizes and binds phosphorylated 'Ser-7' of the C-terminal heptapeptide repeat domain (CTD) of the largest RNA polymerase II subunit POLR2A, and mediates dephosphorylation of 'Ser-5' of the CTD, thereby promoting transcription of snRNA genes; Belongs to the RPAP2 family. (612 aa)
POLR2EDNA-directed RNA polymerases I, II, and III subunit RPABC1; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I, II and III which synthesize ribosomal RNA precursors, mRNA precursors and many functional non- coding RNAs, and small RNAs, such as 5S rRNA and tRNAs, respectively. Pol II is the central component of the basal RNA polymerase II transcription machinery. Pols are composed of mobile elements that move relative to each other. In Pol II, POLR2E/RPB5 is part of the [...] (210 aa)
TENT4ATerminal nucleotidyltransferase 4A; Terminal nucleotidyltransferase that catalyzes preferentially the transfert of ATP and GTP on RNA 3' poly(A) tail creating a heterogeneous 3' poly(A) tail leading to mRNAs stabilization by protecting mRNAs from active deadenylation. Also functions as a catalytic subunit of a TRAMP-like complex which has a poly(A) RNA polymerase activity and is involved in a post-transcriptional quality control mechanism. Polyadenylation with short oligo(A) tails is required for the degradative activity of the exosome on several of its nuclear RNA substrates. Has no t [...] (542 aa)
PHGDHD-3-phosphoglycerate dehydrogenase; Catalyzes the reversible oxidation of 3-phospho-D-glycerate to 3-phosphonooxypyruvate, the first step of the phosphorylated L- serine biosynthesis pathway. Also catalyzes the reversible oxidation of 2-hydroxyglutarate to 2-oxoglutarate and the reversible oxidation of (S)-malate to oxaloacetate; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (533 aa)
POLR1CDNA-directed RNA polymerases I and III subunit RPAC1; DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates. Common component of RNA polymerases I and III which synthesize ribosomal RNA precursors and small RNAs, such as 5S rRNA and tRNAs, respectively. RPAC1 is part of the Pol core element with the central large cleft and probably a clamp element that moves to open and close the cleft (By similarity). (346 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: medium (58%) [HD]