Your Input: | |||||
SUPV3L1 | ATP-dependent RNA helicase SUPV3L1, mitochondrial; Major helicase player in mitochondrial RNA metabolism. Component of the mitochondrial degradosome (mtEXO) complex, that degrades 3' overhang double-stranded RNA with a 3'-to-5' directionality in an ATP-dependent manner. Involved in the degradation of non-coding mitochondrial transcripts (MT-ncRNA) and tRNA-like molecules. ATPase and ATP-dependent multisubstrate helicase, able to unwind double-stranded (ds) DNA and RNA, and RNA/DNA heteroduplexes in the 5'-to-3' direction. Plays a role in the RNA surveillance system in mitochondria; reg [...] (786 aa) | ||||
ELAC2 | Zinc phosphodiesterase ELAC protein 2; Zinc phosphodiesterase, which displays mitochondrial tRNA 3'- processing endonuclease activity. Involved in tRNA maturation, by removing a 3'-trailer from precursor tRNA. (826 aa) | ||||
ANG | Angiogenin; Binds to actin on the surface of endothelial cells; once bound, angiogenin is endocytosed and translocated to the nucleus. Stimulates ribosomal RNA synthesis including that containing the initiation site sequences of 45S rRNA. Cleaves tRNA within anticodon loops to produce tRNA-derived stress-induced fragments (tiRNAs) which inhibit protein synthesis and triggers the assembly of stress granules (SGs). Angiogenin induces vascularization of normal and malignant tissues. Angiogenic activity is regulated by interaction with RNH1 in vivo. (147 aa) | ||||
SERPINA5 | Plasma serine protease inhibitor; Heparin-dependent serine protease inhibitor acting in body fluids and secretions. Inactivates serine proteases by binding irreversibly to their serine activation site. Involved in the regulation of intravascular and extravascular proteolytic activities. Plays hemostatic roles in the blood plasma. Acts as a procoagulant and proinflammatory factor by inhibiting the anticoagulant activated protein C factor as well as the generation of activated protein C factor by the thrombin/thrombomodulin complex. Acts as an anticoagulant factor by inhibiting blood coa [...] (406 aa) | ||||
TRMT10C | tRNA methyltransferase 10 homolog C; Mitochondrial tRNA N(1)-methyltransferase involved in mitochondrial tRNA maturation. Component of mitochondrial ribonuclease P, a complex composed of TRMT10C/MRPP1, HSD17B10/MRPP2 and PRORP/MRPP3, which cleaves tRNA molecules in their 5'-ends. Together with HSD17B10/MRPP2, forms a subcomplex of the mitochondrial ribonuclease P, named MRPP1-MRPP2 subcomplex, which displays functions that are independent of the ribonuclease P activity. The MRPP1-MRPP2 subcomplex catalyzes the formation of N(1)-methylguanine and N(1)-methyladenine at position 9 (m1G9 a [...] (403 aa) | ||||
LGALS4 | Galectin-4; Galectin that binds lactose and a related range of sugars. May be involved in the assembly of adherens junctions. (323 aa) | ||||
RPUSD4 | Mitochondrial RNA pseudouridine synthase RPUSD4; Catalyzes uridine to pseudouridine isomerization (pseudouridylation) of different mitochondrial RNA substrates. Acts on position 1397 in 16S mitochondrial ribosomal RNA (16S mt-rRNA). This modification is required for the assembly of 16S mt-rRNA into a functional mitochondrial ribosome. Acts on position 39 in mitochondrial tRNA(Phe). As a component of a functional protein-RNA module, consisting of RCC1L, NGRN, RPUSD3, RPUSD4, TRUB2, FASTKD2 and 16S mt-rRNA, controls 16S mt-rRNA abundance and is required for intra-mitochondrial translatio [...] (377 aa) | ||||
FASTK | Fas-activated serine/threonine kinase; Phosphorylates the splicing regulator TIA1, thereby promoting the inclusion of FAS exon 6, which leads to an mRNA encoding a pro- apoptotic form of the receptor. (549 aa) | ||||
APP | Gamma-secretase C-terminal fragment 50; Functions as a cell surface receptor and performs physiological functions on the surface of neurons relevant to neurite growth, neuronal adhesion and axonogenesis. Interaction between APP molecules on neighboring cells promotes synaptogenesis. Involved in cell mobility and transcription regulation through protein-protein interactions. Can promote transcription activation through binding to APBB1-KAT5 and inhibits Notch signaling through interaction with Numb. Couples to apoptosis- inducing pathways such as those mediated by G(O) and JIP. Inhibits [...] (770 aa) | ||||
PTCD1 | Pentatricopeptide repeat-containing protein 1, mitochondrial; Mitochondrial protein implicated in negative regulation of leucine tRNA levels, as well as negative regulation of mitochondria- encoded proteins and COX activity. Affects also the 3'-processing of mitochondrial tRNAs; Belongs to the PTCD1 family. (700 aa) | ||||
FAM107B | Protein FAM107B; Family with sequence similarity 107 member B. (306 aa) | ||||
GRSF1 | G-rich sequence factor 1; Regulator of post-transcriptional mitochondrial gene expression, required for assembly of the mitochondrial ribosome and for recruitment of mRNA and lncRNA. Binds RNAs containing the 14 base G- rich element. Preferentially binds RNAs transcribed from three contiguous genes on the light strand of mtDNA, the ND6 mRNA, and the long non-coding RNAs for MT-CYB and MT-ND5, each of which contains multiple consensus binding sequences. Involved in the degradosome-mediated decay of non- coding mitochondrial transcripts (MT-ncRNA) and tRNA-like molecules. Acts by unwindi [...] (480 aa) | ||||
TBRG4 | FAST kinase domain-containing protein 4; Plays a role in processing of mitochondrial RNA precursors and in stabilization of a subset of mature mitochondrial RNA species, such as MT-CO1, MT-CO2, MT-CYB, MT-CO3, MT-ND3, MT-ND5 and MT-ATP8/6. May play a role in cell cycle progression. Belongs to the FAST kinase family. (631 aa) | ||||
LRPPRC | Leucine-rich PPR motif-containing protein, mitochondrial; May play a role in RNA metabolism in both nuclei and mitochondria. In the nucleus binds to HNRPA1-associated poly(A) mRNAs and is part of nmRNP complexes at late stages of mRNA maturation which are possibly associated with nuclear mRNA export. May bind mature mRNA in the nucleus outer membrane. In mitochondria binds to poly(A) mRNA. Plays a role in translation or stability of mitochondrially encoded cytochrome c oxidase (COX) subunits. May be involved in transcription regulation. Cooperates with PPARGC1A to regulate certain mito [...] (1394 aa) | ||||
MAPK3 | Mitogen-activated protein kinase 3; Serine/threonine kinase which acts as an essential component of the MAP kinase signal transduction pathway. MAPK1/ERK2 and MAPK3/ERK1 are the 2 MAPKs which play an important role in the MAPK/ERK cascade. They participate also in a signaling cascade initiated by activated KIT and KITLG/SCF. Depending on the cellular context, the MAPK/ERK cascade mediates diverse biological functions such as cell growth, adhesion, survival and differentiation through the regulation of transcription, translation, cytoskeletal rearrangements. The MAPK/ERK cascade plays a [...] (379 aa) | ||||
FASTKD3 | FAST kinase domain-containing protein 3, mitochondrial; Required for normal mitochondrial respiration. Increases steady-state levels and half-lives of a subset of mature mitochondrial mRNAs MT-ND2, MT-ND3, MT-CYTB, MT-CO2, and MT-ATP8/6. Promotes MT-CO1 mRNA translation and increases mitochondrial complex IV assembly and activity. (662 aa) | ||||
HSPA9 | Stress-70 protein, mitochondrial; Chaperone protein which plays an important role in mitochondrial iron-sulfur cluster (ISC) biogenesis. Interacts with and stabilizes ISC cluster assembly proteins FXN, NFU1, NFS1 and ISCU. Regulates erythropoiesis via stabilization of ISC assembly. May play a role in the control of cell proliferation and cellular aging (By similarity). Belongs to the heat shock protein 70 family. (679 aa) | ||||
RCC1L | RCC1-like G exchanging factor-like protein; Guanine nucleotide exchange factor (GEF) for mitochondrial dynamin-related GTPase OPA1. Activates OPA1, by exchanging bound GDP for free GTP, and drives OPA1 and MFN1-dependent mitochondrial fusion. Plays an essential role in mitochondrial ribosome biogenesis. As a component of a functional protein-RNA module, consisting of RCC1L, NGRN, RPUSD3, RPUSD4, TRUB2, FASTKD2 and 16S mitochondrial ribosomal RNA (16S mt-rRNA), controls 16S mt-rRNA abundance and is required for intra-mitochondrial translation of core subunits of the oxidative phosphoryl [...] (464 aa) | ||||
PHB | Prohibitin; Prohibitin inhibits DNA synthesis. It has a role in regulating proliferation. As yet it is unclear if the protein or the mRNA exhibits this effect. May play a role in regulating mitochondrial respiration activity and in aging. (272 aa) | ||||
PRORP | Mitochondrial ribonuclease P catalytic subunit; Catalytic ribonuclease component of mitochondrial ribonuclease P, a complex composed of TRMT10C/MRPP1, HSD17B10/MRPP2 and PRORP/MRPP3, which cleaves tRNA molecules in their 5'-ends. The presence of TRMT10C/MRPP1, HSD17B10/MRPP2 is required to catalyze tRNA molecules in their 5'-ends. (583 aa) | ||||
MRPS27 | 28S ribosomal protein S27, mitochondrial; RNA-binding component of the mitochondrial small ribosomal subunit (mt-SSU) that plays a role in mitochondrial protein synthesis. Stimulates mitochondrial mRNA translation of subunit components of the mitochondrial electron transport chain. Binds to the mitochondrial 12S rRNA (12S mt-rRNA) and tRNA(Glu). Involved also in positive regulation of cell proliferation and tumor cell growth. (428 aa) | ||||
SSBP1 | Single-stranded DNA-binding protein, mitochondrial; Binds preferentially and cooperatively to pyrimidine rich single-stranded DNA (ss-DNA). In vitro, required to maintain the copy number of mitochondrial DNA (mtDNA) and plays crucial roles during mtDNA replication that stimulate activity of the replisome components POLG and TWNK at the replication fork. Promotes the activity of the gamma complex polymerase POLG, largely by organizing the template DNA and eliminating secondary structures to favor ss-DNA conformations that facilitate POLG activity. In addition it is able to promote the 5 [...] (148 aa) | ||||
DHX30 | ATP-dependent RNA helicase DHX30; RNA-dependent helicase. Plays an important role in the assembly of the mitochondrial large ribosomal subunit. Required for optimal function of the zinc-finger antiviral protein ZC3HAV1 (By similarity). Associates with mitochondrial DNA. Involved in nervous system development and differentiation through its involvement in the up- regulation of a number of genes which are required for neurogenesis, including GSC, NCAM1, neurogenin, and NEUROD (By similarity). Belongs to the DEAD box helicase family. DEAH subfamily. (1194 aa) | ||||
PNPT1 | Polyribonucleotide nucleotidyltransferase 1, mitochondrial; RNA-binding protein implicated in numerous RNA metabolic processes. Catalyzes the phosphorolysis of single-stranded polyribonucleotides processively in the 3'-to-5' direction. Mitochondrial intermembrane factor with RNA-processing exoribonulease activity. Component of the mitochondrial degradosome (mtEXO) complex, that degrades 3' overhang double-stranded RNA with a 3'-to-5' directionality in an ATP-dependent manner. Involved in the degradation of non-coding mitochondrial transcripts (MT-ncRNA) and tRNA-like molecules. Require [...] (783 aa) | ||||
FASTKD1 | FAST kinase domain-containing protein 1, mitochondrial; Involved in the down-regulation of mitochondrial MT-ND3 mRNA levels which leads to decreased respiratory complex I abundance and activity. (847 aa) | ||||
FASTKD2 | FAST kinase domain-containing protein 2, mitochondrial; Plays an important role in assembly of the mitochondrial large ribosomal subunit. As a component of a functional protein-RNA module, consisting of RCC1L, NGRN, RPUSD3, RPUSD4, TRUB2, FASTKD2 and 16S mitochondrial ribosomal RNA (16S mt- rRNA), controls 16S mt-rRNA abundance and is required for intra- mitochondrial translation. (710 aa) | ||||
VDAC1 | Voltage-dependent anion-selective channel protein 1; Forms a channel through the mitochondrial outer membrane and also the plasma membrane. The channel at the outer mitochondrial membrane allows diffusion of small hydrophilic molecules; in the plasma membrane it is involved in cell volume regulation and apoptosis. It adopts an open conformation at low or zero membrane potential and a closed conformation at potentials above 30-40 mV. The open state has a weak anion selectivity whereas the closed state is cation-selective. May participate in the formation of the permeability transition p [...] (283 aa) | ||||
RPUSD3 | Mitochondrial mRNA pseudouridine synthase RPUSD3; Catalyzes uridine to pseudouridine isomerization (pseudouridylation) of specific mitochondrial mRNAs (mt-mRNAs), a post- transcriptional modification necessary for their translation. Acts at position 390 in COXI mt-mRNA and at position 697-699 in mitochondrial COXIII mt-mRNA. As a component of a functional protein-RNA module, consisting of RCC1L, NGRN, RPUSD3, RPUSD4, TRUB2, FASTKD2 and 16S mitochondrial ribosomal RNA (16S mt-rRNA), controls 16S mt-rRNA abundance and may play a role in mitochondrial ribosome biogenesis ; Belongs to the [...] (351 aa) | ||||
FASTKD5 | FAST kinase domain-containing protein 5, mitochondrial; Plays an important role in the processing of non-canonical mitochondrial mRNA precursors. (764 aa) | ||||
NGRN | Neugrin; Plays an essential role in mitochondrial ribosome biogenesis. As a component of a functional protein-RNA module, consisting of RCC1L, NGRN, RPUSD3, RPUSD4, TRUB2, FASTKD2 and 16S mitochondrial ribosomal RNA (16S mt-rRNA), controls 16S mt-rRNA abundance and is required for intra-mitochondrial translation of core subunits of the oxidative phosphorylation system. (291 aa) | ||||
FOXH1 | Forkhead box protein H1; Transcriptional activator. Recognizes and binds to the DNA sequence 5'-TGT[GT][GT]ATT-3'. Required for induction of the goosecoid (GSC) promoter by TGF-beta or activin signaling. Forms a transcriptionally active complex containing FOXH1/SMAD2/SMAD4 on a site on the GSC promoter called TARE (TGF-beta/activin response element). (365 aa) | ||||
IARS2 | Isoleucine--tRNA ligase, mitochondrial; isoleucyl-tRNA synthetase 2, mitochondrial. (1012 aa) | ||||
MT-ATP8 | ATP synthase protein 8; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subuni [...] (68 aa) | ||||
MT-ND3 | NADH-ubiquinone oxidoreductase chain 3; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (115 aa) | ||||
MT-ND2 | NADH-ubiquinone oxidoreductase chain 2; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (347 aa) | ||||
MT-ND4 | NADH-ubiquinone oxidoreductase chain 4; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (459 aa) | ||||
MT-ND5 | NADH-ubiquinone oxidoreductase chain 5; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (603 aa) | ||||
MT-ND4L | NADH-ubiquinone oxidoreductase chain 4L; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (98 aa) | ||||
MT-ND6 | NADH-ubiquinone oxidoreductase chain 6; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (174 aa) | ||||
MT-ATP6 | ATP synthase subunit a; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subuni [...] (226 aa) | ||||
PTGS1 | Prostaglandin G/H synthase 1; Converts arachidonate to prostaglandin H2 (PGH2), a committed step in prostanoid synthesis. Involved in the constitutive production of prostanoids in particular in the stomach and platelets. In gastric epithelial cells, it is a key step in the generation of prostaglandins, such as prostaglandin E2 (PGE2), which plays an important role in cytoprotection. In platelets, it is involved in the generation of thromboxane A2 (TXA2), which promotes platelet activation and aggregation, vasoconstriction and proliferation of vascular smooth muscle cells; Belongs to th [...] (599 aa) | ||||
MT-CYB | Cytochrome b; Component of the ubiquinol-cytochrome c reductase complex (complex III or cytochrome b-c1 complex) that is part of the mitochondrial respiratory chain. The b-c1 complex mediates electron transfer from ubiquinol to cytochrome c. Contributes to the generation of a proton gradient across the mitochondrial membrane that is then used for ATP synthesis. (380 aa) |