STRINGSTRING
HSD17B10 HSD17B10 ADH1A ADH1A TECR TECR RIPK3 RIPK3 PEX11G PEX11G EHHADH EHHADH ACADL ACADL RARRES1 RARRES1 ACOT2 ACOT2 ACADS ACADS ACSS2 ACSS2 ACSBG1 ACSBG1 ALDH2 ALDH2 HACD3 HACD3 MECR MECR CPT1A CPT1A HSD17B12 HSD17B12 OXSM OXSM ACAA2 ACAA2 ACSM3 ACSM3 MCAT MCAT ACOX1 ACOX1 ITGA5 ITGA5 PEX13 PEX13 ECI1 ECI1 ACSM1 ACSM1 FASN FASN ADH1B ADH1B CYP4A11 CYP4A11 ACOT1 ACOT1 ACAD9 ACAD9 ACSS1 ACSS1 RPS15A RPS15A ACOT4 ACOT4 HADHB HADHB SLC25A20 SLC25A20 ACSM2B ACSM2B ACAA1 ACAA1 ACSL4 ACSL4 ACACB ACACB ALDH3A2 ALDH3A2 ETFB ETFB ALDH9A1 ALDH9A1 ACSL5 ACSL5 ACOX3 ACOX3 ACSL3 ACSL3 MTOR MTOR PPT2 PPT2 HACD1 HACD1 ECHS1 ECHS1 ACADSB ACADSB ELOVL4 ELOVL4 ELOVL3 ELOVL3 ACADM ACADM ELOVL5 ELOVL5 CPT2 CPT2 CYP4A22 CYP4A22 ALDH1B1 ALDH1B1 ACOT7 ACOT7 ECI2 ECI2 HADHA HADHA HACD2 HACD2 CPT1C CPT1C ELOVL6 ELOVL6 ADH6 ADH6 ACSM4 ACSM4 ALDH7A1 ALDH7A1 PSMC2 PSMC2 PRNP PRNP CROT CROT HACD4 HACD4 ADH7 ADH7 ACSL1 ACSL1 ELOVL7 ELOVL7 ADH1C ADH1C ETFDH ETFDH CASP1 CASP1 ACADVL ACADVL ACSS3 ACSS3 ETFA ETFA ACSM2A ACSM2A ACSBG2 ACSBG2 ACLY ACLY GCDH GCDH ELOVL1 ELOVL1 ACACA ACACA PPT1 PPT1 ACSL6 ACSL6
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
HSD17B103-hydroxyacyl-CoA dehydrogenase type-2; Mitochondrial dehydrogenase that catalyzes the beta-oxidation at position 17 of androgens and estrogens and has 3-alpha- hydroxysteroid dehydrogenase activity with androsterone. Catalyzes the third step in the beta-oxidation of fatty acids. Carries out oxidative conversions of 7-alpha-OH and 7-beta-OH bile acids. Also exhibits 20-beta-OH and 21-OH dehydrogenase activities with C21 steroids. By interacting with intracellular amyloid-beta, it may contribute to the neuronal dysfunction associated with Alzheimer disease (AD). Essential for structural [...] (261 aa)
ADH1AAlcohol dehydrogenase 1A, alpha polypeptide; Belongs to the zinc-containing alcohol dehydrogenase family. (375 aa)
TECRVery-long-chain enoyl-CoA reductase; Involved in both the production of very long-chain fatty acids for sphingolipid synthesis and the degradation of the sphingosine moiety in sphingolipids through the sphingosine 1-phosphate metabolic pathway. Catalyzes the last of the four reactions of the long-chain fatty acids elongation cycle. This endoplasmic reticulum-bound enzymatic process, allows the addition of 2 carbons to the chain of long- and very long-chain fatty acids/VLCFAs per cycle. This enzyme reduces the trans-2,3-enoyl- CoA fatty acid intermediate to an acyl-CoA that can be furth [...] (308 aa)
RIPK3Receptor-interacting serine/threonine-protein kinase 3; Essential for necroptosis, a programmed cell death process in response to death-inducing TNF-alpha family members. Upon induction of necrosis, RIPK3 interacts with, and phosphorylates RIPK1 and MLKL to form a necrosis-inducing complex. RIPK3 binds to and enhances the activity of three metabolic enzymes: GLUL, GLUD1, and PYGL. These metabolic enzymes may eventually stimulate the tricarboxylic acid cycle and oxidative phosphorylation, which could result in enhanced ROS production. Belongs to the protein kinase superfamily. TKL Ser/T [...] (518 aa)
PEX11GPeroxisomal membrane protein 11C; Promotes membrane protrusion and elongation on the peroxisomal surface; Belongs to the peroxin-11 family. (241 aa)
EHHADHEnoyl-CoA hydratase/3,2-trans-enoyl-CoA isomerase; enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase; In the C-terminal section; belongs to the 3-hydroxyacyl-CoA dehydrogenase family. (723 aa)
ACADLLong-chain specific acyl-CoA dehydrogenase, mitochondrial; Long-chain specific acyl-CoA dehydrogenase is one of the acyl-CoA dehydrogenases that catalyze the first step of mitochondrial fatty acid beta-oxidation, an aerobic process breaking down fatty acids into acetyl-CoA and allowing the production of energy from fats (By similarity). The first step of fatty acid beta-oxidation consists in the removal of one hydrogen from C-2 and C-3 of the straight-chain fatty acyl-CoA thioester, resulting in the formation of trans-2-enoyl- CoA (By similarity). Among the different mitochondrial acyl [...] (430 aa)
RARRES1Retinoic acid receptor responder protein 1; Inhibitor of the cytoplasmic carboxypeptidase AGBL2, may regulate the alpha-tubulin tyrosination cycle. (294 aa)
ACOT2Acyl-coenzyme A thioesterase 2, mitochondrial; Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. Acyl-coenzyme A thioesterase 2/ACOT2 displays higher activity toward long chain acyl CoAs (C14-C20). The enzyme is involved in enhancing the hepatic fatty acid oxidation in mitochondria (By similarity). Belongs to the C/M/P thioester hydrolase family. (483 aa)
ACADSShort-chain specific acyl-CoA dehydrogenase, mitochondrial; Short-chain specific acyl-CoA dehydrogenase is one of the acyl-CoA dehydrogenases that catalyze the first step of mitochondrial fatty acid beta-oxidation, an aerobic process breaking down fatty acids into acetyl-CoA and allowing the production of energy from fats (By similarity). The first step of fatty acid beta-oxidation consists in the removal of one hydrogen from C-2 and C-3 of the straight-chain fatty acyl-CoA thioester, resulting in the formation of trans-2-enoyl- CoA (By similarity). Among the different mitochondrial ac [...] (412 aa)
ACSS2Acetyl-coenzyme A synthetase, cytoplasmic; Catalyzes the synthesis of acetyl-CoA from short-chain fatty acids. Acetate is the preferred substrate. Can also utilize propionate with a much lower affinity (By similarity). Belongs to the ATP-dependent AMP-binding enzyme family. (714 aa)
ACSBG1Long-chain-fatty-acid--CoA ligase ACSBG1; Catalyzes the conversion of fatty acids such as long-chain and very long-chain fatty acids to their active form acyl-CoAs for both synthesis of cellular lipids, and degradation via beta-oxidation. Can activate diverse saturated, monosaturated and polyunsaturated fatty acids ; Belongs to the ATP-dependent AMP-binding enzyme family. Bubblegum subfamily. (724 aa)
ALDH2Aldehyde dehydrogenase, mitochondrial; Aldehyde dehydrogenase 2 family member; Belongs to the aldehyde dehydrogenase family. (517 aa)
HACD3Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 3; Catalyzes the third of the four reactions of the long-chain fatty acids elongation cycle. This endoplasmic reticulum-bound enzymatic process, allows the addition of two carbons to the chain of long- and very long-chain fatty acids/VLCFAs per cycle. This enzyme catalyzes the dehydration of the 3-hydroxyacyl-CoA intermediate into trans-2,3-enoyl-CoA, within each cycle of fatty acid elongation. Thereby, it participates in the production of VLCFAs of different chain lengths that are involved in multiple biological processes as precursor [...] (362 aa)
MECREnoyl-[acyl-carrier-protein] reductase, mitochondrial; Catalyzes the NADPH-dependent reduction of trans-2-enoyl thioesters in mitochondrial fatty acid synthesis (fatty acid synthesis type II). Fatty acid chain elongation in mitochondria uses acyl carrier protein (ACP) as an acyl group carrier, but the enzyme accepts both ACP and CoA thioesters as substrates in vitro. Has a preference for short and medium chain substrates, including trans-2-hexenoyl-CoA (C6), trans-2-decenoyl-CoA (C10), and trans-2-hexadecenoyl-CoA (C16). (373 aa)
CPT1ACarnitine O-palmitoyltransferase 1, liver isoform; Catalyzes the transfer of the acyl group of long-chain fatty acid-CoA conjugates onto carnitine, an essential step for the mitochondrial uptake of long-chain fatty acids and their subsequent beta-oxidation in the mitochondrion. Plays an important role in triglyceride metabolism. (773 aa)
HSD17B12Very-long-chain 3-oxoacyl-CoA reductase; Catalyzes the second of the four reactions of the long-chain fatty acids elongation cycle. This endoplasmic reticulum-bound enzymatic process, allows the addition of two carbons to the chain of long- and very long-chain fatty acids/VLCFAs per cycle. This enzyme has a 3-ketoacyl-CoA reductase activity, reducing 3-ketoacyl-CoA to 3- hydroxyacyl-CoA, within each cycle of fatty acid elongation. Thereby, it may participate in the production of VLCFAs of different chain lengths that are involved in multiple biological processes as precursors of membra [...] (312 aa)
OXSM3-oxoacyl-[acyl-carrier-protein] synthase, mitochondrial; May play a role in the biosynthesis of lipoic acid as well as longer chain fatty acids required for optimal mitochondrial function. Belongs to the thiolase-like superfamily. Beta-ketoacyl-ACP synthases family. (459 aa)
ACAA23-ketoacyl-CoA thiolase, mitochondrial; In the production of energy from fats, this is one of the enzymes that catalyzes the last step of the mitochondrial beta- oxidation pathway, an aerobic process breaking down fatty acids into acetyl-CoA (Probable). Using free coenzyme A/CoA, catalyzes the thiolytic cleavage of medium- to long-chain unbranched 3-oxoacyl-CoAs into acetyl-CoA and a fatty acyl-CoA shortened by two carbon atoms (Probable). Also catalyzes the condensation of two acetyl-CoA molecules into acetoacetyl-CoA and could be involved in the production of ketone bodies (Probable) [...] (397 aa)
ACSM3Acyl-coenzyme A synthetase ACSM3, mitochondrial; Catalyzes the activation of fatty acids by CoA to produce an acyl-CoA, the first step in fatty acid metabolism (By similarity). Capable of activating medium-chain fatty acids with a preference for isobutyrate among fatty acids with 2-6 carbon atoms (By similarity). (586 aa)
MCATMalonyl-CoA-acyl carrier protein transacylase, mitochondrial; Catalyzes the transfer of a malonyl moiety from malonyl-CoA to the free thiol group of the phosphopantetheine arm of the mitochondrial ACP protein (NDUFAB1). This suggests the existence of the biosynthesis of fatty acids in mitochondria. (390 aa)
ACOX1Peroxisomal acyl-CoA oxidase 1, A chain; Catalyzes the desaturation of acyl-CoAs to 2-trans-enoyl-CoAs. Isoform 1 shows highest activity against medium-chain fatty acyl-CoAs and activity decreases with increasing chain length. Isoform 2 is active against a much broader range of substrates and shows activity towards very long-chain acyl-CoAs. Isoform 2 is twice as active as isoform 1 against 16-hydroxy-palmitoyl-CoA and is 25% more active against 1,16-hexadecanodioyl-CoA. (660 aa)
ITGA5Integrin alpha-5 heavy chain; Integrin alpha-5/beta-1 (ITGA5:ITGB1) is a receptor for fibronectin and fibrinogen. It recognizes the sequence R-G-D in its ligands. ITGA5:ITGB1 binds to PLA2G2A via a site (site 2) which is distinct from the classical ligand-binding site (site 1) and this induces integrin conformational changes and enhanced ligand binding to site 1. ITGA5:ITGB1 acts as a receptor for fibrillin-1 (FBN1) and mediates R-G-D-dependent cell adhesion to FBN1. ITGA5:ITGB1 is a receptor for IL1B and binding is essential for IL1B signaling. ITGA5:ITGB3 is a receptor for soluble CD [...] (1049 aa)
PEX13Peroxisomal membrane protein PEX13; Component of the peroxisomal translocation machinery with PEX14 and PEX17. Functions as a docking factor for the predominantly cytoplasmic PTS1 receptor (PAS10/PEX5). Involved in the import of PTS1 and PTS2 proteins. (403 aa)
ECI1Enoyl-CoA delta isomerase 1, mitochondrial; Able to isomerize both 3-cis and 3-trans double bonds into the 2-trans form in a range of enoyl-CoA species. (302 aa)
ACSM1Acyl-coenzyme A synthetase ACSM1, mitochondrial; Catalyzes the activation of fatty acids by CoA to produce an acyl-CoA, the first step in fatty acid metabolism. Capable of activating medium-chain fatty acids (e.g. butyric (C4) to decanoic (C10) acids), and certain carboxylate-containing xenobiotics, e.g. benzoate. Also catalyzes the activation of lipoate to lipoyl-nucleoside monophosphate (By similarity). Activates lipoate with GTP at a 1000-fold higher rate than with ATP and activates both (R)- and (S)-lipoate to the respective lipoyl-GMP, with a preference for (R)-lipoate (By similarity). (577 aa)
FASN3-hydroxyacyl-[acyl-carrier-protein] dehydratase; Fatty acid synthetase catalyzes the formation of long-chain fatty acids from acetyl-CoA, malonyl-CoA and NADPH. This multifunctional protein has 7 catalytic activities as an acyl carrier protein. (2511 aa)
ADH1BAll-trans-retinol dehydrogenase [NAD(+)] ADH1B; Catalyzes the NAD-dependent oxidation of all-trans-retinol and its derivatives such as all-trans-4-hydroxyretinol and may participate to retinoid metabolism. In vitro can also catalyzes the NADH-dependent reduction of all-trans- retinal and its derivatives such as all-trans-4-oxoretinal. Catalyzes in the oxidative direction with higher efficiency. Has the same affinity for all-trans-4-hydroxyretinol and all-trans-4-oxoretinal. (375 aa)
CYP4A11Cytochrome P450 4A11; A cytochrome P450 monooxygenase involved in the metabolism of fatty acids and their oxygenated derivatives (oxylipins). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (CPR; NADPH-ferrihemoprotein reductase). Catalyzes predominantly the oxidation of the terminal carbon (omega-oxidation) of saturated and unsaturated fatty acids, the catalytic efficiency decreasing in the following order: dodecanoic > tetradecanoic > (9 [...] (519 aa)
ACOT1Acyl-coenzyme A thioesterase 1; Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs into free fatty acids and coenzyme A (CoASH), regulating intracellular levels of acyl-CoAs, free fatty acids and CoASH. More active towards saturated and unsaturated long chain fatty acyl-CoAs (C12-C20); Belongs to the C/M/P thioester hydrolase family. (421 aa)
ACAD9Complex I assembly factor ACAD9, mitochondrial; As part of the MCIA complex, primarily participates to the assembly of the mitochondrial complex I and therefore plays a role in oxidative phosphorylation. This moonlighting protein has also a dehydrogenase activity toward a broad range of substrates with greater specificity for long-chain unsaturated acyl-CoAs. However, in vivo, it does not seem to play a primary role in fatty acid oxidation. In addition, the function in complex I assembly is independent of the dehydrogenase activity of the protein. (621 aa)
ACSS1Acetyl-coenzyme A synthetase 2-like, mitochondrial; Catalyzes the synthesis of acetyl-CoA from short-chain fatty acids. Acetate is the preferred substrate. Can also utilize propionate with a much lower affinity (By similarity). Provides acetyl-CoA that is utilized mainly for oxidation under ketogenic conditions (By similarity). Involved in thermogenesis under ketogenic conditions, using acetate as a vital fuel when carbohydrate availability is insufficient (By similarity). (689 aa)
RPS15A40S ribosomal protein S15a; Structural component of the ribosome. Required for proper erythropoiesis. (130 aa)
ACOT4Peroxisomal succinyl-coenzyme A thioesterase; Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. ACOT4 is a peroxisomal succinyl-coenzyme A thioesterase can also hydrolyze glutaryl-CoA and long chain saturated acyl-CoAs. (421 aa)
HADHBTrifunctional enzyme subunit beta, mitochondrial; Mitochondrial trifunctional enzyme catalyzes the last three of the four reactions of the mitochondrial beta-oxidation pathway. The mitochondrial beta-oxidation pathway is the major energy-producing process in tissues and is performed through four consecutive reactions breaking down fatty acids into acetyl-CoA. Among the enzymes involved in this pathway, the trifunctional enzyme exhibits specificity for long- chain fatty acids. Mitochondrial trifunctional enzyme is a heterotetrameric complex composed of two proteins, the trifunctional en [...] (474 aa)
SLC25A20Mitochondrial carnitine/acylcarnitine carrier protein; Mediates the transport of acylcarnitines of different length across the mitochondrial inner membrane from the cytosol to the mitochondrial matrix for their oxidation by the mitochondrial fatty acid-oxidation pathway. (301 aa)
ACSM2BAcyl-coenzyme A synthetase ACSM2B, mitochondrial; Catalyzes the activation of fatty acids by CoA to produce an acyl-CoA, the first step in fatty acid metabolism. Capable of activating medium-chain fatty acids (e.g. butyric (C4) to decanoic (C10) acids), and certain carboxylate- containing xenobiotics, e.g. benzoate. (577 aa)
ACAA13-ketoacyl-CoA thiolase, peroxisomal; acetyl-CoA acyltransferase 1; Belongs to the thiolase-like superfamily. Thiolase family. (424 aa)
ACSL4Long-chain-fatty-acid--CoA ligase 4; Catalyzes the conversion of long-chain fatty acids to their active form acyl-CoA for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially activates arachidonate and eicosapentaenoate as substrates. Preferentially activates 8,9-EET > 14,15-EET > 5,6-EET > 11,12-EET. Modulates glucose- stimulated insulin secretion by regulating the levels of unesterified EETs (By similarity). Modulates prostaglandin E2 secretion. Belongs to the ATP-dependent AMP-binding enzyme family. (711 aa)
ACACBAcetyl-CoA carboxylase 2; Mitochondrial enzyme that catalyzes the carboxylation of acetyl-CoA to malonyl-CoA and plays a central role in fatty acid metabolism. Catalyzes a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA. Through the production of malonyl-CoA that allosterically inhibits carnitine palmitoyltransferase 1 at the mitochondria, negatively regulates fatty acid oxidation (By similarity). Together with its cytoso [...] (2458 aa)
ALDH3A2Aldehyde dehydrogenase family 3 member A2; Catalyzes the oxidation of medium and long chain aliphatic aldehydes to fatty acids. Active on a variety of saturated and unsaturated aliphatic aldehydes between 6 and 24 carbons in length. Responsible for conversion of the sphingosine 1-phosphate (S1P) degradation product hexadecenal to hexadecenoic acid. (508 aa)
ETFBElectron transfer flavoprotein subunit beta; Heterodimeric electron transfer flavoprotein that accepts electrons from several mitochondrial dehydrogenases, including acyl-CoA dehydrogenases, glutaryl-CoA and sarcosine dehydrogenase. It transfers the electrons to the main mitochondrial respiratory chain via ETF- ubiquinone oxidoreductase (Probable). Required for normal mitochondrial fatty acid oxidation and normal amino acid metabolism. ETFB binds an AMP molecule that probably has a purely structural role. (346 aa)
ALDH9A14-trimethylaminobutyraldehyde dehydrogenase, N-terminally processed; Converts gamma-trimethylaminobutyraldehyde into gamma- butyrobetaine with high efficiency (in vitro). Can catalyze the irreversible oxidation of a broad range of aldehydes to the corresponding acids in an NAD-dependent reaction, but with low efficiency. (518 aa)
ACSL5Long-chain-fatty-acid--CoA ligase 5; Catalyzes the conversion of long-chain fatty acids to their active form acyl-CoAs for both synthesis of cellular lipids, and degradation via beta-oxidation. ACSL5 may activate fatty acids from exogenous sources for the synthesis of triacylglycerol destined for intracellular storage (By similarity). Utilizes a wide range of saturated fatty acids with a preference for C16-C18 unsaturated fatty acids (By similarity). It was suggested that it may also stimulate fatty acid oxidation (By similarity). At the villus tip of the crypt-villus axis of the small [...] (739 aa)
ACOX3Peroxisomal acyl-coenzyme A oxidase 3; Oxidizes the CoA-esters of 2-methyl-branched fatty acids. Belongs to the acyl-CoA oxidase family. (700 aa)
ACSL3Long-chain-fatty-acid--CoA ligase 3; Acyl-CoA synthetases (ACSL) activates long-chain fatty acids for both synthesis of cellular lipids, and degradation via beta- oxidation. Required for the incorporation of fatty acids into phosphatidylcholine, the major phospholipid located on the surface of VLDL (very low density lipoproteins). Has mainly an anabolic role in energy metabolism. Mediates hepatic lipogenesis. Preferentially uses myristate, laurate, arachidonate and eicosapentaenoate as substrates. Both isoforms exhibit the same level of activity (By similarity). (720 aa)
MTORSerine/threonine-protein kinase mTOR; Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals. MTOR directly or indirectly regulates the phosphorylation of at least 800 proteins. Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2). Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis. This includes phosphorylation of EIF [...] (2549 aa)
PPT2Lysosomal thioesterase PPT2; Removes thioester-linked fatty acyl groups from various substrates including S-palmitoyl-CoA. Has the highest S-thioesterase activity for the acyl groups palmitic and myristic acid followed by other short- and long-chain acyl substrates. However, because of structural constraints, is unable to remove palmitate from peptides or proteins. (308 aa)
HACD1Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 1; [Isoform 1]: Catalyzes the third of the four reactions of the long-chain fatty acids elongation cycle. This endoplasmic reticulum- bound enzymatic process, allows the addition of two carbons to the chain of long- and very long-chain fatty acids/VLCFAs per cycle. This enzyme catalyzes the dehydration of the 3-hydroxyacyl-CoA intermediate into trans-2,3-enoyl-CoA, within each cycle of fatty acid elongation. Thereby, it participates in the production of VLCFAs of different chain lengths that are involved in multiple biological processe [...] (288 aa)
ECHS1Enoyl-CoA hydratase, mitochondrial; Straight-chain enoyl-CoA thioesters from C4 up to at least C16 are processed, although with decreasing catalytic rate. Has high substrate specificity for crotonyl-CoA and moderate specificity for acryloyl-CoA, 3-methylcrotonyl-CoA and methacrylyl-CoA. It is noteworthy that binds tiglyl-CoA, but hydrates only a small amount of this substrate; Belongs to the enoyl-CoA hydratase/isomerase family. (290 aa)
ACADSBShort/branched chain specific acyl-CoA dehydrogenase, mitochondrial; Has greatest activity toward short branched chain acyl-CoA derivative such as (s)-2-methylbutyryl-CoA, isobutyryl-CoA, and 2- methylhexanoyl-CoA as well as toward short straight chain acyl-CoAs such as butyryl-CoA and hexanoyl-CoA. Can use valproyl-CoA as substrate and may play a role in controlling the metabolic flux of valproic acid in the development of toxicity of this agent. (432 aa)
ELOVL4Elongation of very long chain fatty acids protein 4; Catalyzes the first and rate-limiting reaction of the four reactions that constitute the long-chain fatty acids elongation cycle. This endoplasmic reticulum-bound enzymatic process allows the addition of 2 carbons to the chain of long- and very long-chain fatty acids (VLCFAs) per cycle. Condensing enzyme that catalyzes the synthesis of very long chain saturated (VLC-SFA) and polyunsaturated (PUFA) fatty acids that are involved in multiple biological processes as precursors of membrane lipids and lipid mediators. May play a critical r [...] (314 aa)
ELOVL3Elongation of very long chain fatty acids protein 3; Catalyzes the first and rate-limiting reaction of the four reactions that constitute the long-chain fatty acids elongation cycle. This endoplasmic reticulum-bound enzymatic process allows the addition of 2 carbons to the chain of long- and very long-chain fatty acids (VLCFAs) per cycle. Condensing enzyme that exhibits activity toward saturated and unsaturated acyl-CoA substrates with higher activity toward C18 acyl-CoAs, especially C18:0 acyl-CoAs. May participate in the production of saturated and monounsaturated VLCFAs of different [...] (270 aa)
ACADMMedium-chain specific acyl-CoA dehydrogenase, mitochondrial; Acyl-CoA dehydrogenase specific for acyl chain lengths of 4 to 16 that catalyzes the initial step of fatty acid beta-oxidation. Utilizes the electron transfer flavoprotein (ETF) as an electron acceptor to transfer electrons to the main mitochondrial respiratory chain via ETF-ubiquinone oxidoreductase (ETF dehydrogenase). (454 aa)
ELOVL5Elongation of very long chain fatty acids protein 5; Catalyzes the first and rate-limiting reaction of the four reactions that constitute the long-chain fatty acids elongation cycle. This endoplasmic reticulum-bound enzymatic process allows the addition of 2 carbons to the chain of long- and very long-chain fatty acids (VLCFAs) per cycle. Condensing enzyme that acts specifically toward polyunsaturated acyl-CoA with the higher activity toward C18:3(n-6) acyl-CoA. May participate in the production of monounsaturated and of polyunsaturated VLCFAs of different chain lengths that are involv [...] (326 aa)
CPT2Carnitine O-palmitoyltransferase 2, mitochondrial; Carnitine palmitoyltransferase 2. (658 aa)
CYP4A22Cytochrome P450 4A22; Catalyzes the omega- and (omega-1)-hydroxylation of various fatty acids such as laurate and palmitate. Shows no activity towards arachidonic acid and prostaglandin A1. Lacks functional activity in the kidney and does not contribute to renal 20-hydroxyeicosatetraenoic acid (20-HETE) biosynthesis. (519 aa)
ALDH1B1Aldehyde dehydrogenase X, mitochondrial; ALDHs play a major role in the detoxification of alcohol- derived acetaldehyde. They are involved in the metabolism of corticosteroids, biogenic amines, neurotransmitters, and lipid peroxidation. (517 aa)
ACOT7Cytosolic acyl coenzyme A thioester hydrolase; Acyl-CoA thioesterases are a group of enzymes that catalyze the hydrolysis of acyl-CoAs to the free fatty acid and coenzyme A (CoASH), providing the potential to regulate intracellular levels of acyl-CoAs, free fatty acids and CoASH. Acyl-coenzyme A thioesterase 7/ACOT7 preferentially hydrolyzes palmitoyl-CoA, but has a broad specificity acting on other fatty acyl-CoAs with chain-lengths of C8-C18. May play an important physiological function in brain. (380 aa)
ECI2Enoyl-CoA delta isomerase 2, mitochondrial; Able to isomerize both 3-cis and 3-trans double bonds into the 2-trans form in a range of enoyl-CoA species. Has a preference for 3-trans substrates (By similarity). (394 aa)
HADHATrifunctional enzyme subunit alpha, mitochondrial; Mitochondrial trifunctional enzyme catalyzes the last three of the four reactions of the mitochondrial beta-oxidation pathway. The mitochondrial beta-oxidation pathway is the major energy-producing process in tissues and is performed through four consecutive reactions breaking down fatty acids into acetyl-CoA. Among the enzymes involved in this pathway, the trifunctional enzyme exhibits specificity for long-chain fatty acids. Mitochondrial trifunctional enzyme is a heterotetrameric complex composed of two proteins, the trifunctional en [...] (763 aa)
HACD2Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 2; Catalyzes the third of the four reactions of the long-chain fatty acids elongation cycle. This endoplasmic reticulum-bound enzymatic process, allows the addition of two carbons to the chain of long- and very long-chain fatty acids/VLCFAs per cycle. This enzyme catalyzes the dehydration of the 3-hydroxyacyl-CoA intermediate into trans-2,3-enoyl-CoA, within each cycle of fatty acid elongation. Thereby, it participates in the production of VLCFAs of different chain lengths that are involved in multiple biological processes as precursor [...] (254 aa)
CPT1CCarnitine O-palmitoyltransferase 1, brain isoform; May play a role in lipid metabolic process. Belongs to the carnitine/choline acetyltransferase family. (803 aa)
ELOVL6Elongation of very long chain fatty acids protein 6; Catalyzes the first and rate-limiting reaction of the four reactions that constitute the long-chain fatty acids elongation cycle. This endoplasmic reticulum-bound enzymatic process allows the addition of 2 carbons to the chain of long- and very long-chain fatty acids (VLCFAs) per cycle. Condensing enzyme that elongates fatty acids with 12, 14 and 16 carbons with higher activity toward C16:0 acyl-CoAs. Catalyzes the synthesis of unsaturated C16 long chain fatty acids and, to a lesser extent, C18:0 and those with low desaturation degre [...] (265 aa)
ADH6Alcohol dehydrogenase 6. (375 aa)
ACSM4Acyl-coenzyme A synthetase ACSM4, mitochondrial; Catalyzes the activation of fatty acids by CoA to produce an acyl-CoA, the first step in fatty acid metabolism (By similarity). Capable of activating medium-chain fatty acids with a preference for C6-12 fatty acids (By similarity); Belongs to the ATP-dependent AMP-binding enzyme family. (580 aa)
ALDH7A1Alpha-aminoadipic semialdehyde dehydrogenase; Multifunctional enzyme mediating important protective effects. Metabolizes betaine aldehyde to betaine, an important cellular osmolyte and methyl donor. Protects cells from oxidative stress by metabolizing a number of lipid peroxidation-derived aldehydes. Involved in lysine catabolism; Belongs to the aldehyde dehydrogenase family. (539 aa)
PSMC226S proteasome regulatory subunit 7; Component of the 26S proteasome, a multiprotein complex involved in the ATP-dependent degradation of ubiquitinated proteins. This complex plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins, which could impair cellular functions, and by removing proteins whose functions are no longer required. Therefore, the proteasome participates in numerous cellular processes, including cell cycle progression, apoptosis, or DNA damage repair. PSMC2 belongs to the heterohexameric ring of AAA (ATPases associated with [...] (433 aa)
PRNPMajor prion protein; Its primary physiological function is unclear. May play a role in neuronal development and synaptic plasticity. May be required for neuronal myelin sheath maintenance. May promote myelin homeostasis through acting as an agonist for ADGRG6 receptor. May play a role in iron uptake and iron homeostasis. Soluble oligomers are toxic to cultured neuroblastoma cells and induce apoptosis (in vitro) (By similarity). Association with GPC1 (via its heparan sulfate chains) targets PRNP to lipid rafts. Also provides Cu(2+) or ZN(2+) for the ascorbate-mediated GPC1 deaminase deg [...] (253 aa)
CROTPeroxisomal carnitine O-octanoyltransferase; Beta-oxidation of fatty acids. The highest activity concerns the C6 to C10 chain length substrate. Converts the end product of pristanic acid beta oxidation, 4,8-dimethylnonanoyl-CoA, to its corresponding carnitine ester. (640 aa)
HACD4Very-long-chain (3R)-3-hydroxyacyl-CoA dehydratase 4; Catalyzes the third of the four reactions of the long-chain fatty acids elongation cycle. This endoplasmic reticulum-bound enzymatic process, allows the addition of two carbons to the chain of long- and very long-chain fatty acids/VLCFAs per cycle. This enzyme catalyzes the dehydration of the 3-hydroxyacyl-CoA intermediate into trans-2,3-enoyl-CoA, within each cycle of fatty acid elongation. Thereby, it participates in the production of VLCFAs of different chain lengths that are involved in multiple biological processes as precursor [...] (232 aa)
ADH7All-trans-retinol dehydrogenase [NAD(+)] ADH7; Catalyzes the NAD-dependent oxidation of all-trans-retinol, alcohol, and omega-hydroxy fatty acids and their derivatives. Oxidizes preferentially all trans-retinol, all-trans-4-hydroxyretinol, 9-cis- retinol, 2-hexenol, and long chain omega-hydroxy fatty acids such as juniperic acid. In vitro can also catalyzes the NADH-dependent reduction of all-trans- retinal and aldehydes and their derivatives. Reduces preferentially all trans- retinal, all-trans-4-oxoretinal and hexanal. Catalyzes in the oxidative direction with higher efficiency. Ther [...] (394 aa)
ACSL1Long-chain-fatty-acid--CoA ligase 1; Catalyzes the conversion of long-chain fatty acids to their active form acyl-CoAs for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially uses palmitoleate, oleate and linoleate. Preferentially activates arachidonate than epoxyeicosatrienoic acids (EETs) or hydroxyeicosatrienoic acids (HETEs) (By similarity); Belongs to the ATP-dependent AMP-binding enzyme family. (698 aa)
ELOVL7Elongation of very long chain fatty acids protein 7; Catalyzes the first and rate-limiting reaction of the four reactions that constitute the long-chain fatty acids elongation cycle. This endoplasmic reticulum-bound enzymatic process allows the addition of 2 carbons to the chain of long- and very long-chain fatty acids (VLCFAs) per cycle. Condensing enzyme with higher activity toward C18 acyl-CoAs, especially C18:3(n-3) acyl-CoAs and C18:3(n-6)-CoAs. Also active toward C20:4-, C18:0-, C18:1-, C18:2- and C16:0-CoAs, and weakly toward C20:0-CoA. Little or no activity toward C22:0-, C24:0 [...] (281 aa)
ADH1CAlcohol dehydrogenase 1C, gamma polypeptide. (375 aa)
ETFDHElectron transfer flavoprotein-ubiquinone oxidoreductase, mitochondrial; Accepts electrons from ETF and reduces ubiquinone; Belongs to the ETF-QO/FixC family. (617 aa)
CASP1Caspase-1 subunit p10; Thiol protease that cleaves IL-1 beta between an Asp and an Ala, releasing the mature cytokine which is involved in a variety of inflammatory processes. Important for defense against pathogens. Cleaves and activates sterol regulatory element binding proteins (SREBPs). Can also promote apoptosis. Upon inflammasome activation, during DNA virus infection but not RNA virus challenge, controls antiviral immunity through the cleavage of CGAS, rendering it inactive. In apoptotic cells, cleaves SPHK2 which is released from cells and remains enzymatically active extracell [...] (404 aa)
ACADVLVery long-chain specific acyl-CoA dehydrogenase, mitochondrial; Active toward esters of long-chain and very long chain fatty acids such as palmitoyl-CoA, myristoyl-CoA and stearoyl-CoA. Can accommodate substrate acyl chain lengths as long as 24 carbons, but shows little activity for substrates of less than 12 carbons. Belongs to the acyl-CoA dehydrogenase family. (678 aa)
ACSS3Acyl-CoA synthetase short-chain family member 3, mitochondrial; Catalyzes the synthesis of acetyl-CoA from short-chain fatty acids. Propionate is the preferred substrate. Can utilize acetate and butyrate with a much lower affinity (By similarity); Belongs to the ATP-dependent AMP-binding enzyme family. (686 aa)
ETFAElectron transfer flavoprotein subunit alpha, mitochondrial; Heterodimeric electron transfer flavoprotein that accepts electrons from several mitochondrial dehydrogenases, including acyl-CoA dehydrogenases, glutaryl-CoA and sarcosine dehydrogenase. It transfers the electrons to the main mitochondrial respiratory chain via ETF-ubiquinone oxidoreductase (ETF dehydrogenase). Required for normal mitochondrial fatty acid oxidation and normal amino acid metabolism. (333 aa)
ACSM2AAcyl-coenzyme A synthetase ACSM2A, mitochondrial; Catalyzes the activation of fatty acids by CoA to produce an acyl-CoA, the first step in fatty acid metabolism (By similarity). Capable of activating medium-chain fatty acids (e.g. butyric (C4) to decanoic (C10) acids), and certain carboxylate-containing xenobiotics, e.g. benzoate (By similarity); Belongs to the ATP-dependent AMP-binding enzyme family. (577 aa)
ACSBG2Long-chain-fatty-acid--CoA ligase ACSBG2; Catalyzes the conversion of fatty acids such as long chain and very long-chain fatty acids to their active form acyl-CoAs for both synthesis of cellular lipids, and degradation via beta-oxidation. Can activate diverse saturated, monosaturated and polyunsaturated fatty acids. Has increased ability to activate oleic and linoleic acid. May play a role in spermatogenesis. (666 aa)
ACLYATP-citrate synthase; Catalyzes the cleavage of citrate into oxaloacetate and acetyl-CoA, the latter serving as common substrate for de novo cholesterol and fatty acid synthesis. In the N-terminal section; belongs to the succinate/malate CoA ligase beta subunit family. (1101 aa)
GCDHGlutaryl-CoA dehydrogenase, mitochondrial; Catalyzes the oxidative decarboxylation of glutaryl-CoA to crotonyl-CoA and CO(2) in the degradative pathway of L-lysine, L- hydroxylysine, and L-tryptophan metabolism. It uses electron transfer flavoprotein as its electron acceptor. Isoform Short is inactive. Belongs to the acyl-CoA dehydrogenase family. (438 aa)
ELOVL1Elongation of very long chain fatty acids protein 1; Catalyzes the first and rate-limiting reaction of the four reactions that constitute the long-chain fatty acids elongation cycle. This endoplasmic reticulum-bound enzymatic process allows the addition of 2 carbons to the chain of long- and very long-chain fatty acids (VLCFAs) per cycle. Condensing enzyme that exhibits activity toward saturated and monounsaturated acyl-CoA substrates, with the highest activity towards C22:0 acyl-CoA. May participate in the production of both saturated and monounsaturated VLCFAs of different chain leng [...] (279 aa)
ACACAAcetyl-CoA carboxylase 1; Cytosolic enzyme that catalyzes the carboxylation of acetyl- CoA to malonyl-CoA, the first and rate-limiting step of de novo fatty acid biosynthesis. This is a 2 steps reaction starting with the ATP-dependent carboxylation of the biotin carried by the biotin carboxyl carrier (BCC) domain followed by the transfer of the carboxyl group from carboxylated biotin to acetyl-CoA. (2383 aa)
PPT1Palmitoyl-protein thioesterase 1; Removes thioester-linked fatty acyl groups such as palmitate from modified cysteine residues in proteins or peptides during lysosomal degradation. Prefers acyl chain lengths of 14 to 18 carbons ; Belongs to the palmitoyl-protein thioesterase family. (306 aa)
ACSL6Long-chain-fatty-acid--CoA ligase 6; Catalyzes the conversion of long-chain fatty acids to their active form acyl-CoA for both synthesis of cellular lipids, and degradation via beta-oxidation. Plays an important role in fatty acid metabolism in brain and the acyl- CoAs produced may be utilized exclusively for the synthesis of the brain lipid; Belongs to the ATP-dependent AMP-binding enzyme family. (722 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (38%) [HD]