STRINGSTRING
ACE ACE FIS1 FIS1 DNM1L DNM1L MFN1 MFN1 MME MME MFN2 MFN2 MIEF1 MIEF1 MIEF2 MIEF2 KL KL MMEL1 MMEL1 NEU1 NEU1 NR3C2 NR3C2 GLB1 GLB1 MFF MFF BAX BAX DENR DENR
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ACEAngiotensin-converting enzyme, soluble form; Converts angiotensin I to angiotensin II by release of the terminal His-Leu, this results in an increase of the vasoconstrictor activity of angiotensin. Also able to inactivate bradykinin, a potent vasodilator. Has also a glycosidase activity which releases GPI- anchored proteins from the membrane by cleaving the mannose linkage in the GPI moiety; Belongs to the peptidase M2 family. (1306 aa)
FIS1Mitochondrial fission 1 protein; Involved in the fragmentation of the mitochondrial network and its perinuclear clustering. Plays a minor role in the recruitment and association of the fission mediator dynamin-related protein 1 (DNM1L) to the mitochondrial surface and mitochondrial fission. Can induce cytochrome c release from the mitochondrion to the cytosol, ultimately leading to apoptosis. Also mediates peroxisomal fission. Belongs to the FIS1 family. (152 aa)
DNM1LDynamin-1-like protein; Functions in mitochondrial and peroxisomal division. Mediates membrane fission through oligomerization into membrane-associated tubular structures that wrap around the scission site to constrict and sever the mitochondrial membrane through a GTP hydrolysis-dependent mechanism. The specific recruitment at scission sites is mediated by membrane receptors like MFF, MIEF1 and MIEF2 for mitochondrial membranes. While the recruitment by the membrane receptors is GTP-dependent, the following hydrolysis of GTP induces the dissociation from the receptors and allows DNM1L [...] (749 aa)
MFN1Mitofusin-1; Mitochondrial outer membrane GTPase that mediates mitochondrial clustering and fusion. Membrane clustering requires GTPase activity. It may involve a major rearrangement of the coiled coil domains. Mitochondria are highly dynamic organelles, and their morphology is determined by the equilibrium between mitochondrial fusion and fission events. Overexpression induces the formation of mitochondrial networks (in vitro). Has low GTPase activity. (741 aa)
MMENeprilysin; Thermolysin-like specificity, but is almost confined on acting on polypeptides of up to 30 amino acids. Biologically important in the destruction of opioid peptides such as Met- and Leu-enkephalins by cleavage of a Gly-Phe bond. Able to cleave angiotensin-1, angiotensin-2 and angiotensin 1-9. Involved in the degradation of atrial natriuretic factor (ANF). Displays UV-inducible elastase activity toward skin preelastic and elastic fibers. Belongs to the peptidase M13 family. (750 aa)
MFN2Mitofusin-2; Mitochondrial outer membrane GTPase that mediates mitochondrial clustering and fusion. Mitochondria are highly dynamic organelles, and their morphology is determined by the equilibrium between mitochondrial fusion and fission events. Overexpression induces the formation of mitochondrial networks. Membrane clustering requires GTPase activity and may involve a major rearrangement of the coiled coil domains (Probable). Plays a central role in mitochondrial metabolism and may be associated with obesity and/or apoptosis processes (By similarity). Plays an important role in the [...] (757 aa)
MIEF1Mitochondrial dynamics protein MID51; Mitochondrial outer membrane protein which regulates mitochondrial fission. Promotes the recruitment and association of the fission mediator dynamin-related protein 1 (DNM1L) to the mitochondrial surface independently of the mitochondrial fission FIS1 and MFF proteins. Regulates DNM1L GTPase activity and DNM1L oligomerization. Binds ADP and can also bind GDP, although with lower affinity. Does not bind CDP, UDP, ATP, AMP or GTP. Inhibits DNM1L GTPase activity in the absence of bound ADP. Requires ADP to stimulate DNM1L GTPase activity and the assem [...] (478 aa)
MIEF2Mitochondrial dynamics protein MID49; Mitochondrial outer membrane protein which regulates mitochondrial organization. It is required for mitochondrial fission and promotes the recruitment and association of the fission mediator dynamin-related protein 1 (DNM1L) to the mitochondrial surface independently of the mitochondrial fission FIS1 and MFF proteins. Regulates DNM1L GTPase activity. Belongs to the MID49/MID51 family. (465 aa)
KLKlotho peptide; May have weak glycosidase activity towards glucuronylated steroids. However, it lacks essential active site Glu residues at positions 239 and 872, suggesting it may be inactive as a glycosidase in vivo. May be involved in the regulation of calcium and phosphorus homeostasis by inhibiting the synthesis of active vitamin D (By similarity). Essential factor for the specific interaction between FGF23 and FGFR1 (By similarity). (1012 aa)
MMEL1Membrane metallo-endopeptidase-like 1, soluble form; Metalloprotease involved in sperm function, possibly by modulating the processes of fertilization and early embryonic development. Degrades a broad variety of small peptides with a preference for peptides shorter than 3 kDa containing neutral bulky aliphatic or aromatic amino acid residues. Shares the same substrate specificity with MME and cleaves peptides at the same amide bond (By similarity); Belongs to the peptidase M13 family. (779 aa)
NEU1Sialidase-1; Catalyzes the removal of sialic acid (N-acetylneuraminic acid) moieties from glycoproteins and glycolipids. To be active, it is strictly dependent on its presence in the multienzyme complex. Appears to have a preference for alpha 2-3 and alpha 2-6 sialyl linkage. (415 aa)
NR3C2Mineralocorticoid receptor; Receptor for both mineralocorticoids (MC) such as aldosterone and glucocorticoids (GC) such as corticosterone or cortisol. Binds to mineralocorticoid response elements (MRE) and transactivates target genes. The effect of MC is to increase ion and water transport and thus raise extracellular fluid volume and blood pressure and lower potassium levels; Belongs to the nuclear hormone receptor family. NR3 subfamily. (984 aa)
GLB1Beta-galactosidase; [Isoform 1]: Cleaves beta-linked terminal galactosyl residues from gangliosides, glycoproteins, and glycosaminoglycans. (677 aa)
MFFMitochondrial fission factor; Plays a role in mitochondrial and peroxisomal fission. Promotes the recruitment and association of the fission mediator dynamin-related protein 1 (DNM1L) to the mitochondrial surface. May be involved in regulation of synaptic vesicle membrane dynamics by recruitment of DNM1L to clathrin-containing vesicles. (342 aa)
BAXApoptosis regulator BAX; Plays a role in the mitochondrial apoptotic process. Under normal conditions, BAX is largely cytosolic via constant retrotranslocation from mitochondria to the cytosol mediated by BCL2L1/Bcl-xL, which avoids accumulation of toxic BAX levels at the mitochondrial outer membrane (MOM). Under stress conditions, undergoes a conformation change that causes translocation to the mitochondrion membrane, leading to the release of cytochrome c that then triggers apoptosis. Promotes activation of CASP3, and thereby apoptosis. (218 aa)
DENRDensity-regulated protein; May be involved in the translation of target mRNAs by scanning and recognition of the initiation codon. Involved in translation initiation; promotes recruitmnet of aminoacetyled initiator tRNA to P site of 40S ribosomes. Can promote release of deacylated tRNA and mRNA from recycled 40S subunits following ABCE1-mediated dissociation of post-termination ribosomal complexes into subunits. Plays a role in the modulation of the translational profile of a subset of cancer-related mRNAs when recruited to the translational initiation complex by the oncogene MCTS1. (198 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: medium (42%) [HD]