STRINGSTRING
MVK MVK GGT1 GGT1 SQLE SQLE GGPS1 GGPS1 ACAA2 ACAA2 HMGCR HMGCR MVD MVD HMGCS1 HMGCS1 ACSL4 ACSL4 FDPS FDPS HMGCS2 HMGCS2 GGT1-2 GGT1-2 HMGA1 HMGA1 SERPINA3 SERPINA3 FDFT1 FDFT1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
MVKMevalonate kinase; Catalyzes the phosphorylation of mevalonate to mevalonate 5- phosphate, a key step in isoprenoid and cholesterol biosynthesis ; Belongs to the GHMP kinase family. Mevalonate kinase subfamily. (396 aa)
GGT1Glutathione hydrolase 1 heavy chain; Cleaves the gamma-glutamyl bond of extracellular glutathione (gamma-Glu-Cys-Gly), glutathione conjugates, and other gamma-glutamyl compounds. The metabolism of glutathione releases free glutamate and the dipeptide cysteinyl-glycine, which is hydrolyzed to cysteine and glycine by dipeptidases. In the presence of high concentrations of dipeptides and some amino acids, can also catalyze a transpeptidation reaction, transferring the gamma-glutamyl moiety to an acceptor amino acid to form a new gamma-glutamyl compound. Initiates extracellular glutathione [...] (569 aa)
SQLESqualene monooxygenase; Catalyzes the stereospecific oxidation of squalene to (S)- 2,3-epoxysqualene, and is considered to be a rate-limiting enzyme in steroid biosynthesis. (574 aa)
GGPS1Geranylgeranyl pyrophosphate synthase; Catalyzes the trans-addition of the three molecules of IPP onto DMAPP to form geranylgeranyl pyrophosphate, an important precursor of carotenoids and geranylated proteins. (300 aa)
ACAA23-ketoacyl-CoA thiolase, mitochondrial; In the production of energy from fats, this is one of the enzymes that catalyzes the last step of the mitochondrial beta- oxidation pathway, an aerobic process breaking down fatty acids into acetyl-CoA (Probable). Using free coenzyme A/CoA, catalyzes the thiolytic cleavage of medium- to long-chain unbranched 3-oxoacyl-CoAs into acetyl-CoA and a fatty acyl-CoA shortened by two carbon atoms (Probable). Also catalyzes the condensation of two acetyl-CoA molecules into acetoacetyl-CoA and could be involved in the production of ketone bodies (Probable) [...] (397 aa)
HMGCR3-hydroxy-3-methylglutaryl-coenzyme A reductase; Transmembrane glycoprotein that is the rate-limiting enzyme in cholesterol biosynthesis as well as in the biosynthesis of nonsterol isoprenoids that are essential for normal cell function including ubiquinone and geranylgeranyl proteins. (888 aa)
MVDDiphosphomevalonate decarboxylase; Performs the first committed step in the biosynthesis of isoprenes. (400 aa)
HMGCS1Hydroxymethylglutaryl-CoA synthase, cytoplasmic; This enzyme condenses acetyl-CoA with acetoacetyl-CoA to form HMG-CoA, which is the substrate for HMG-CoA reductase. (520 aa)
ACSL4Long-chain-fatty-acid--CoA ligase 4; Catalyzes the conversion of long-chain fatty acids to their active form acyl-CoA for both synthesis of cellular lipids, and degradation via beta-oxidation. Preferentially activates arachidonate and eicosapentaenoate as substrates. Preferentially activates 8,9-EET > 14,15-EET > 5,6-EET > 11,12-EET. Modulates glucose- stimulated insulin secretion by regulating the levels of unesterified EETs (By similarity). Modulates prostaglandin E2 secretion. Belongs to the ATP-dependent AMP-binding enzyme family. (711 aa)
FDPSFarnesyl pyrophosphate synthase; Key enzyme in isoprenoid biosynthesis which catalyzes the formation of farnesyl diphosphate (FPP), a precursor for several classes of essential metabolites including sterols, dolichols, carotenoids, and ubiquinones. FPP also serves as substrate for protein farnesylation and geranylgeranylation. Catalyzes the sequential condensation of isopentenyl pyrophosphate with the allylic pyrophosphates, dimethylallyl pyrophosphate, and then with the resultant geranylpyrophosphate to the ultimate product farnesyl pyrophosphate; Belongs to the FPP/GGPP synthase family. (419 aa)
HMGCS2Hydroxymethylglutaryl-CoA synthase, mitochondrial; This enzyme condenses acetyl-CoA with acetoacetyl-CoA to form HMG-CoA, which is the substrate for HMG-CoA reductase. (508 aa)
GGT1-2Gamma-glutamyltransferase 1. (569 aa)
HMGA1High mobility group protein HMG-I/HMG-Y; HMG-I/Y bind preferentially to the minor groove of A+T rich regions in double-stranded DNA. It is suggested that these proteins could function in nucleosome phasing and in the 3'-end processing of mRNA transcripts. They are also involved in the transcription regulation of genes containing, or in close proximity to A+T-rich regions. (107 aa)
SERPINA3Alpha-1-antichymotrypsin His-Pro-less; Although its physiological function is unclear, it can inhibit neutrophil cathepsin G and mast cell chymase, both of which can convert angiotensin-1 to the active angiotensin-2. (423 aa)
FDFT1Squalene synthase; Farnesyl-diphosphate farnesyltransferase 1; Belongs to the phytoene/squalene synthase family. (476 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (16%) [HD]