STRINGSTRING
SERPINA3 SERPINA3 GRIN2B GRIN2B FDFT1 FDFT1 CYP51A1 CYP51A1 MVK MVK ACAT1 ACAT1 SQLE SQLE TM7SF2 TM7SF2 GGPS1 GGPS1 HMGCR HMGCR SSR2 SSR2 MVD MVD LBR LBR MYB MYB ACAT2 ACAT2 PMVK PMVK LSS LSS HMGA1 HMGA1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
SERPINA3Alpha-1-antichymotrypsin His-Pro-less; Although its physiological function is unclear, it can inhibit neutrophil cathepsin G and mast cell chymase, both of which can convert angiotensin-1 to the active angiotensin-2. (423 aa)
GRIN2BGlutamate receptor ionotropic, NMDA 2B; Component of NMDA receptor complexes that function as heterotetrameric, ligand-gated ion channels with high calcium permeability and voltage-dependent sensitivity to magnesium. Channel activation requires binding of the neurotransmitter glutamate to the epsilon subunit, glycine binding to the zeta subunit, plus membrane depolarization to eliminate channel inhibition by Mg(2+). Sensitivity to glutamate and channel kinetics depend on the subunit composition. In concert with DAPK1 at extrasynaptic sites, acts as a central mediator for stroke damage. [...] (1484 aa)
FDFT1Squalene synthase; Farnesyl-diphosphate farnesyltransferase 1; Belongs to the phytoene/squalene synthase family. (476 aa)
CYP51A1Lanosterol 14-alpha demethylase; A cytochrome P450 monooxygenase involved in sterol biosynthesis. Catalyzes 14-alpha demethylation of lanosterol and 24,25- dihydrolanosterol likely through sequential oxidative conversion of 14- alpha methyl group to hydroxymethyl, then to carboxylaldehyde, followed by the formation of the delta 14,15 double bond in the sterol core and concomitant release of formic acid. Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P45 [...] (509 aa)
MVKMevalonate kinase; Catalyzes the phosphorylation of mevalonate to mevalonate 5- phosphate, a key step in isoprenoid and cholesterol biosynthesis ; Belongs to the GHMP kinase family. Mevalonate kinase subfamily. (396 aa)
ACAT1Acetyl-CoA acetyltransferase, mitochondrial; This is one of the enzymes that catalyzes the last step of the mitochondrial beta-oxidation pathway, an aerobic process breaking down fatty acids into acetyl-CoA. Using free coenzyme A/CoA, catalyzes the thiolytic cleavage of medium- to long-chain 3-oxoacyl-CoAs into acetyl-CoA and a fatty acyl-CoA shortened by two carbon atoms. The activity of the enzyme is reversible and it can also catalyze the condensation of two acetyl-CoA molecules into acetoacetyl-CoA. Thereby, it plays a major role in ketone body metabolism. (427 aa)
SQLESqualene monooxygenase; Catalyzes the stereospecific oxidation of squalene to (S)- 2,3-epoxysqualene, and is considered to be a rate-limiting enzyme in steroid biosynthesis. (574 aa)
TM7SF2Delta(14)-sterol reductase TM7SF2; Catalyzes the reduction of the C14-unsaturated bond of lanosterol, as part of the metabolic pathway leading to cholesterol biosynthesis. (418 aa)
GGPS1Geranylgeranyl pyrophosphate synthase; Catalyzes the trans-addition of the three molecules of IPP onto DMAPP to form geranylgeranyl pyrophosphate, an important precursor of carotenoids and geranylated proteins. (300 aa)
HMGCR3-hydroxy-3-methylglutaryl-coenzyme A reductase; Transmembrane glycoprotein that is the rate-limiting enzyme in cholesterol biosynthesis as well as in the biosynthesis of nonsterol isoprenoids that are essential for normal cell function including ubiquinone and geranylgeranyl proteins. (888 aa)
SSR2Translocon-associated protein subunit beta; TRAP proteins are part of a complex whose function is to bind calcium to the ER membrane and thereby regulate the retention of ER resident proteins; Belongs to the TRAP-beta family. (183 aa)
MVDDiphosphomevalonate decarboxylase; Performs the first committed step in the biosynthesis of isoprenes. (400 aa)
LBRDelta(14)-sterol reductase LBR; Catalyzes the reduction of the C14-unsaturated bond of lanosterol, as part of the metabolic pathway leading to cholesterol biosynthesis. Plays a critical role in myeloid cell cholesterol biosynthesis which is essential to both myeloid cell growth and functional maturation (By similarity). Mediates the activation of NADPH oxidases, perhaps by maintaining critical levels of cholesterol required for membrane lipid raft formation during neutrophil differentiation (By similarity). Anchors the lamina and the heterochromatin to the inner nuclear membrane. (615 aa)
MYBTranscriptional activator Myb; Transcriptional activator; DNA-binding protein that specifically recognize the sequence 5'-YAAC[GT]G-3'. Plays an important role in the control of proliferation and differentiation of hematopoietic progenitor cells. (761 aa)
ACAT2Acetyl-CoA acetyltransferase, cytosolic; Involved in the biosynthetic pathway of cholesterol. (397 aa)
PMVKPhosphomevalonate kinase. (192 aa)
LSSLanosterol synthase; Catalyzes the cyclization of (S)-2,3 oxidosqualene to lanosterol, a reaction that forms the sterol nucleus. Through the production of lanosterol may regulate lens protein aggregation and increase transparency. (732 aa)
HMGA1High mobility group protein HMG-I/HMG-Y; HMG-I/Y bind preferentially to the minor groove of A+T rich regions in double-stranded DNA. It is suggested that these proteins could function in nucleosome phasing and in the 3'-end processing of mRNA transcripts. They are also involved in the transcription regulation of genes containing, or in close proximity to A+T-rich regions. (107 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (26%) [HD]