Your Input: | |||||
GNB3 | Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-3; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (340 aa) | ||||
GNB4 | Guanine nucleotide-binding protein subunit beta-4; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (340 aa) | ||||
C3 | Complement C3c alpha' chain fragment 1; C3 plays a central role in the activation of the complement system. Its processing by C3 convertase is the central reaction in both classical and alternative complement pathways. After activation C3b can bind covalently, via its reactive thioester, to cell surface carbohydrates or immune aggregates. [C3-beta-c]: Acts as a chemoattractant for neutrophils in chronic inflammation. (1663 aa) | ||||
GNG13 | Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-13; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (67 aa) | ||||
GNG11 | Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-11; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (73 aa) | ||||
GNGT1 | Guanine nucleotide-binding protein G(T) subunit gamma-T1; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (74 aa) | ||||
GNB5 | Guanine nucleotide-binding protein subunit beta-5; Enhances GTPase-activating protein (GAP) activity of regulator of G protein signaling (RGS) proteins, hence involved in the termination of the signaling initiated by the G protein coupled receptors (GPCRs) by accelerating the GTP hydrolysis on the G-alpha subunits, thereby promoting their inactivation (Probable). Increases RGS9 GTPase-activating protein (GAP) activity, hence contributes to the deactivation of G protein signaling initiated by D(2) dopamine receptors. May play an important role in neuronal signaling, including in the par [...] (395 aa) | ||||
GNAO1 | Guanine nucleotide-binding protein G(o) subunit alpha; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. The G(o) protein function is not clear. Stimulated by RGS14; Belongs to the G-alpha family. G(i/o/t/z) subfamily. (354 aa) | ||||
GNA12 | Guanine nucleotide-binding protein subunit alpha-12; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. Activates effector molecule RhoA by binding and activating RhoGEFs (ARHGEF12/LARG). GNA12-dependent Rho signaling subsequently regulates transcription factor AP-1 (activating protein-1) (By similarity). GNA12-dependent Rho signaling also regulates protein phosphatese 2A activation causing dephosphorylation of its target proteins. Promotes tumor cell invasion and metastasis by activating RhoA/ROCK sign [...] (381 aa) | ||||
GNAQ | Guanine nucleotide-binding protein G(q) subunit alpha; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. Regulates B-cell selection and survival and is required to prevent B-cell-dependent autoimmunity. Regulates chemotaxis of BM- derived neutrophils and dendritic cells (in vitro) (By similarity). Belongs to the G-alpha family. G(q) subfamily. (359 aa) | ||||
GNG8 | Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-8; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (70 aa) | ||||
GNB2 | Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (340 aa) | ||||
GPR132 | Probable G-protein coupled receptor 132; May be a receptor for oxidized free fatty acids derived from linoleic and arachidonic acids such as 9-hydroxyoctadecadienoic acid (9-HODE). Activates a G alpha protein, most likely G alpha(q). May be involved in apoptosis. Functions at the G2/M checkpoint to delay mitosis. May function as a sensor that monitors the oxidative states and mediates appropriate cellular responses such as secretion of paracrine signals and attenuation of proliferation. May mediate ths accumulation of intracellular inositol phosphates at acidic pH through proton-sensin [...] (380 aa) | ||||
ZDHHC3 | Palmitoyltransferase ZDHHC3; Palmitoyltransferase with broad specificity. Palmitoylates GABA receptors on their gamma subunit (GABRG1, GABRG2 and GABRG3), which regulates synaptic clustering and/or cell surface stability (By similarity). Palmitoylates glutamate receptors GRIA1 and GRIA2, which leads to their retention in Golgi. May also palmitoylate DLG4, DNAJC5 and SNAP25 (By similarity). (333 aa) | ||||
DRD2 | D(2) dopamine receptor; Dopamine receptor whose activity is mediated by G proteins which inhibit adenylyl cyclase; Belongs to the G-protein coupled receptor 1 family. (443 aa) | ||||
GNAI3 | Guanine nucleotide-binding protein G(i) subunit alpha; Heterotrimeric guanine nucleotide-binding proteins (G proteins) function as transducers downstream of G protein-coupled receptors (GPCRs) in numerous signaling cascades. The alpha chain contains the guanine nucleotide binding site and alternates between an active, GTP-bound state and an inactive, GDP-bound state. Signaling by an activated GPCR promotes GDP release and GTP binding. The alpha subunit has a low GTPase activity that converts bound GTP to GDP, thereby terminating the signal. Both GDP release and GTP hydrolysis are modul [...] (354 aa) | ||||
GNG5 | Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-5; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (68 aa) | ||||
GNG12 | Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-12; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (72 aa) | ||||
GNAS | Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas; Guanine nucleotide-binding proteins (G proteins) function as transducers in numerous signaling pathways controlled by G protein- coupled receptors (GPCRs). Signaling involves the activation of adenylyl cyclases, resulting in increased levels of the signaling molecule cAMP. GNAS functions downstream of several GPCRs, including beta-adrenergic receptors. XLas isoforms interact with the same set of receptors as GNAS isoforms (By similarity). (1037 aa) | ||||
GNG10 | Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-10; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. Interacts with beta-1 and beta-2, but not with beta-3. (68 aa) | ||||
GNB1 | Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (340 aa) | ||||
GNG7 | Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-7; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. Plays a role in the regulation of adenylyl cyclase signaling in certain regions of the brain. Plays a role in the formation or stabilzation of a G protein heterotrimer (G(olf) subunit alpha-beta-gamma-7) that is required for adenylyl cyclase activity in t [...] (68 aa) | ||||
GAPDH | Glyceraldehyde-3-phosphate dehydrogenase; Has both glyceraldehyde-3-phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Participates in nuclear events including transcription, RNA transport, DNA replication and apoptosis. Nuclear functions are probably due to the nitrosylase activity that mediates cysteine S-nitrosylation of nuclear target proteins such as SIRT1, HDAC2 and PRKDC. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations throu [...] (335 aa) | ||||
GNG4 | Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-4; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (75 aa) | ||||
SUCLG2 | Succinate--CoA ligase [GDP-forming] subunit beta, mitochondrial; GTP-specific succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. (440 aa) | ||||
GNGT2 | Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-T2; Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction. (69 aa) | ||||
ZDHHC7 | Palmitoyltransferase ZDHHC7; Palmitoyltransferase with broad specificity. Palmitoylates JAM3. Palmitoylates SNAP25 and DLG4/PSD95 (By similarity). Palmitoylates sex steroid hormone receptors, including ESR1, PGR and AR, thereby regulating their targeting to the plasma membrane and their function in rapid intracellular signaling upon binding of sex hormones. May play a role in follicle stimulation hormone (FSH) activation of testicular Sertoli cells (By similarity). (345 aa) |