STRINGSTRING
CHKA CHKA AHCY AHCY GSR GSR CHPT1 CHPT1 AGXT2 AGXT2 CDO1 CDO1 DMGDH DMGDH BHMT2 BHMT2 PEMT PEMT BAAT BAAT DNMT3A DNMT3A DHFR2 DHFR2 CHDH CHDH BCAT2 BCAT2 MAT2B MAT2B DNMT3B DNMT3B SHMT2 SHMT2 PLD1 PLD1 GPX4 GPX4 GAD1 GAD1 GPX6 GPX6 GPX7 GPX7 MTR MTR ETNK2 ETNK2 AHCYL1 AHCYL1 GCLM GCLM CTH CTH SARDH SARDH MAT1A MAT1A GNMT GNMT DNM1 DNM1 GAD2 GAD2 MTHFR MTHFR PSAT1 PSAT1 PCYT1B PCYT1B SOD3 SOD3 GPX3 GPX3 GPX2 GPX2 MTHFD2 MTHFD2 PSPH PSPH MTHFD2L MTHFD2L CBS CBS CHKB CHKB GPX5 GPX5 DHFR DHFR CEPT1 CEPT1 PCYT2 PCYT2 BCAT1 BCAT1 SOD2 SOD2 MTHFD1L MTHFD1L CBSL CBSL PHGDH PHGDH GSS GSS GCLC GCLC MTHFD1 MTHFD1 ETNK1 ETNK1 CSAD CSAD SOD1 SOD1 DNMT3L DNMT3L AMT AMT BHMT BHMT PCYT1A PCYT1A MAT2A MAT2A TYMS TYMS AHCYL2 AHCYL2 SHMT1 SHMT1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
CHKACholine kinase alpha; Has a key role in phospholipid biosynthesis and may contribute to tumor cell growth. Catalyzes the first step in phosphatidylcholine biosynthesis. Contributes to phosphatidylethanolamine biosynthesis. Phosphorylates choline and ethanolamine. Has higher activity with choline. (457 aa)
AHCYAdenosylhomocysteinase; Adenosylhomocysteine is a competitive inhibitor of S- adenosyl-L-methionine-dependent methyl transferase reactions; therefore adenosylhomocysteinase may play a key role in the control of methylations via regulation of the intracellular concentration of adenosylhomocysteine. (432 aa)
GSRGlutathione reductase, mitochondrial; Maintains high levels of reduced glutathione in the cytosol. (522 aa)
CHPT1Cholinephosphotransferase 1; Catalyzes phosphatidylcholine biosynthesis from CDP-choline. It thereby plays a central role in the formation and maintenance of vesicular membranes. (406 aa)
AGXT2Alanine--glyoxylate aminotransferase 2, mitochondrial; Can metabolize asymmetric dimethylarginine (ADMA) via transamination to alpha-keto-delta-(NN-dimethylguanidino) valeric acid (DMGV). ADMA is a potent inhibitor of nitric-oxide (NO) synthase, and this activity provides mechanism through which the kidney regulates blood pressure; Belongs to the class-III pyridoxal-phosphate-dependent aminotransferase family. (514 aa)
CDO1Cysteine dioxygenase type 1; Initiates several important metabolic pathways related to pyruvate and several sulfurate compounds including sulfate, hypotaurine and taurine. Critical regulator of cellular cysteine concentrations. Has an important role in maintaining the hepatic concentation of intracellular free cysteine within a proper narrow range. (200 aa)
DMGDHDimethylglycine dehydrogenase, mitochondrial; Catalyzes the demethylation of N,N-dimethylglycine to sarcosine. Also has activity with sarcosine in vitro. (866 aa)
BHMT2S-methylmethionine--homocysteine S-methyltransferase BHMT2; Involved in the regulation of homocysteine metabolism. Converts homocysteine to methionine using S-methylmethionine (SMM) as a methyl donor. (363 aa)
PEMTPhosphatidylethanolamine N-methyltransferase; Catalyzes the three sequential steps of the methylation pathway of phosphatidylcholine biosynthesis, the SAM-dependent methylation of phosphatidylethanolamine (PE) to phosphatidylmonomethylethanolamine (PMME), PMME to phosphatidyldimethylethanolamine (PDME), and PDME to phosphatidylcholine (PC). (236 aa)
BAATBile acid-CoA:amino acid N-acyltransferase; Catalyzes the amidation of bile acids (BAs) with the amino acids taurine and glycine. More than 95% of the BAs are N-acyl amidates with glycine and taurine. Amidation of BAs in the liver with glycine or taurine prior to their excretion into bile is an important biochemical event in bile acid metabolism. This conjugation (or amidation) plays several important biological roles in that it promotes the secretion of BAs and cholesterol into bile and increases the detergent properties of BAs in the intestine, which facilitates lipid and vitamin abs [...] (418 aa)
DNMT3ADNA (cytosine-5)-methyltransferase 3A; Required for genome-wide de novo methylation and is essential for the establishment of DNA methylation patterns during development. DNA methylation is coordinated with methylation of histones. It modifies DNA in a non-processive manner and also methylates non-CpG sites. May preferentially methylate DNA linker between 2 nucleosomal cores and is inhibited by histone H1. Plays a role in paternal and maternal imprinting. Required for methylation of most imprinted loci in germ cells. Acts as a transcriptional corepressor for ZBTB18. Recruited to trimet [...] (912 aa)
DHFR2Dihydrofolate reductase 2, mitochondrial; Key enzyme in folate metabolism. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Required to prevent uracil accumulation in mtDNA. Binds its own mRNA and that of DHFR. (187 aa)
CHDHCholine dehydrogenase, mitochondrial; Choline dehydrogenase. (594 aa)
BCAT2Branched-chain-amino-acid aminotransferase, mitochondrial; Catalyzes the first reaction in the catabolism of the essential branched chain amino acids leucine, isoleucine, and valine. May also function as a transporter of branched chain alpha-keto acids. (392 aa)
MAT2BMethionine adenosyltransferase 2 subunit beta; Regulatory subunit of S-adenosylmethionine synthetase 2, an enzyme that catalyzes the formation of S-adenosylmethionine from methionine and ATP. Regulates MAT2A catalytic activity by changing its kinetic properties, increasing its affinity for L-methionine. Can bind NADP (in vitro). (334 aa)
DNMT3BDNA (cytosine-5)-methyltransferase 3B; Required for genome-wide de novo methylation and is essential for the establishment of DNA methylation patterns during development. DNA methylation is coordinated with methylation of histones. May preferentially methylates nucleosomal DNA within the nucleosome core region. May function as transcriptional co-repressor by associating with CBX4 and independently of DNA methylation. Seems to be involved in gene silencing (By similarity). In association with DNMT1 and via the recruitment of CTCFL/BORIS, involved in activation of BAG1 gene expression by [...] (853 aa)
SHMT2Serine hydroxymethyltransferase, mitochondrial; Catalyzes the cleavage of serine to glycine accompanied with the production of 5,10-methylenetetrahydrofolate, an essential intermediate for purine biosynthesis. Serine provides the major source of folate one-carbon in cells by catalyzing the transfer of one carbon from serine to tetrahydrofolate. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway via its role in glycine and tetrahydrofolate metabolism: thymidylate biosynthesis is required to prevent uracil accumulation in mtDNA. Also required for mitochondrial tran [...] (504 aa)
PLD1Phospholipase D1; Implicated as a critical step in numerous cellular pathways, including signal transduction, membrane trafficking, and the regulation of mitosis. May be involved in the regulation of perinuclear intravesicular membrane traffic (By similarity). (1074 aa)
GPX4Phospholipid hydroperoxide glutathione peroxidase; Essential antioxidant peroxidase that directly reduces phospholipid hydroperoxide even if they are incorporated in membranes and lipoproteins (By similarity). Can also reduce fatty acid hydroperoxide, cholesterol hydroperoxide and thymine hydroperoxide (By similarity). Plays a key role in protecting cells from oxidative damage by preventing membrane lipid peroxidation (By similarity). Required to prevent cells from ferroptosis, a non-apoptotic cell death resulting from an iron-dependent accumulation of lipid reactive oxygen species. Th [...] (197 aa)
GAD1Glutamate decarboxylase 1; Catalyzes the production of GABA. (594 aa)
GPX6Glutathione peroxidase 6. (221 aa)
GPX7Glutathione peroxidase 7; It protects esophageal epithelia from hydrogen peroxide- induced oxidative stress. It suppresses acidic bile acid-induced reactive oxigen species (ROS) and protects against oxidative DNA damage and double-strand breaks; Belongs to the glutathione peroxidase family. (187 aa)
MTRMethionine synthase; Catalyzes the transfer of a methyl group from methyl- cobalamin to homocysteine, yielding enzyme-bound cob(I)alamin and methionine. Subsequently, remethylates the cofactor using methyltetrahydrofolate (By similarity); Belongs to the vitamin-B12 dependent methionine synthase family. (1265 aa)
ETNK2Ethanolamine kinase 2; Highly specific for ethanolamine phosphorylation. Does not have choline kinase activity (By similarity). (394 aa)
AHCYL1S-adenosylhomocysteine hydrolase-like protein 1; Multifaceted cellular regulator which coordinates several essential cellular functions including regulation of epithelial HCO3(-) and fluid secretion, mRNA processing and DNA replication. Regulates ITPR1 sensitivity to inositol 1,4,5-trisphosphate competing for the common binding site and acting as endogenous 'pseudoligand' whose inhibitory activity can be modulated by its phosphorylation status. In the pancreatic and salivary ducts, at resting state, attenuates inositol 1,4,5-trisphosphate-induced calcium release by interacting with ITP [...] (530 aa)
GCLMGlutamate-cysteine ligase modifier subunit; Belongs to the aldo/keto reductase family. Glutamate-- cysteine ligase light chain subfamily. (274 aa)
CTHCystathionine gamma-lyase; Catalyzes the last step in the trans-sulfuration pathway from methionine to cysteine. Has broad substrate specificity. Converts cystathionine to cysteine, ammonia and 2-oxobutanoate. Converts two cysteine molecules to lanthionine and hydrogen sulfide. Can also accept homocysteine as substrate. Specificity depends on the levels of the endogenous substrates. Generates the endogenous signaling molecule hydrogen sulfide (H2S), and so contributes to the regulation of blood pressure. Acts as a cysteine-protein sulfhydrase by mediating sulfhydration of target protei [...] (405 aa)
SARDHSarcosine dehydrogenase, mitochondrial; Sarcosine dehydrogenase; Belongs to the GcvT family. (918 aa)
MAT1AS-adenosylmethionine synthase isoform type-1; Catalyzes the formation of S-adenosylmethionine from methionine and ATP. The reaction comprises two steps that are both catalyzed by the same enzyme: formation of S-adenosylmethionine (AdoMet) and triphosphate, and subsequent hydrolysis of the triphosphate. (395 aa)
GNMTGlycine N-methyltransferase; Catalyzes the methylation of glycine by using S- adenosylmethionine (AdoMet) to form N-methylglycine (sarcosine) with the concomitant production of S-adenosylhomocysteine (AdoHcy). Possible crucial role in the regulation of tissue concentration of AdoMet and of metabolism of methionine. (295 aa)
DNM1Dynamin-1; Microtubule-associated force-producing protein involved in producing microtubule bundles and able to bind and hydrolyze GTP. Most probably involved in vesicular trafficking processes. Involved in receptor-mediated endocytosis. (864 aa)
GAD2Glutamate decarboxylase 2; Catalyzes the production of GABA. (585 aa)
MTHFRMethylenetetrahydrofolate reductase; Catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a co-substrate for homocysteine remethylation to methionine. (697 aa)
PSAT1Phosphoserine aminotransferase; Catalyzes the reversible conversion of 3- phosphohydroxypyruvate to phosphoserine and of 3-hydroxy-2-oxo-4- phosphonooxybutanoate to phosphohydroxythreonine. Belongs to the class-V pyridoxal-phosphate-dependent aminotransferase family. SerC subfamily. (370 aa)
PCYT1BCholine-phosphate cytidylyltransferase B; Controls phosphatidylcholine synthesis. (369 aa)
SOD3Extracellular superoxide dismutase [Cu-Zn]; Protect the extracellular space from toxic effect of reactive oxygen intermediates by converting superoxide radicals into hydrogen peroxide and oxygen. (240 aa)
GPX3Glutathione peroxidase 3; Protects cells and enzymes from oxidative damage, by catalyzing the reduction of hydrogen peroxide, lipid peroxides and organic hydroperoxide, by glutathione. (226 aa)
GPX2Glutathione peroxidase 2; Could play a major role in protecting mammals from the toxicity of ingested organic hydroperoxides. Tert-butyl hydroperoxide, cumene hydroperoxide and linoleic acid hydroperoxide but not phosphatidycholine hydroperoxide, can act as acceptors. (190 aa)
MTHFD2Bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase, mitochondrial; Although its dehydrogenase activity is NAD-specific, it can also utilize NADP at a reduced efficiency. Belongs to the tetrahydrofolate dehydrogenase/cyclohydrolase family. (350 aa)
PSPHPhosphoserine phosphatase; Catalyzes the last step in the biosynthesis of serine from carbohydrates. The reaction mechanism proceeds via the formation of a phosphoryl-enzyme intermediates; Belongs to the HAD-like hydrolase superfamily. SerB family. (225 aa)
MTHFD2LProbable bifunctional methylenetetrahydrofolate dehydrogenase/cyclohydrolase 2; Methylenetetrahydrofolate dehydrogenase 2 like. (347 aa)
CBSCystathionine beta-synthase-like protein; Hydro-lyase catalyzing the first step of the transsulfuration pathway, where the hydroxyl group of L-serine is displaced by L- homocysteine in a beta-replacement reaction to form L-cystathionine, the precursor of L-cysteine. This catabolic route allows the elimination of L-methionine and the toxic metabolite L-homocysteine. Also involved in the production of hydrogen sulfide, a gasotransmitter with signaling and cytoprotective effects on neurons. (551 aa)
CHKBCholine/ethanolamine kinase; Has a key role in phospholipid metabolism, and catalyzes the first step of phosphatidylethanolamine and phosphatidylcholine biosynthesis. (395 aa)
GPX5Epididymal secretory glutathione peroxidase; Protects cells and enzymes from oxidative damage, by catalyzing the reduction of hydrogen peroxide, lipid peroxides and organic hydroperoxide, by glutathione. May constitute a glutathione peroxidase-like protective system against peroxide damage in sperm membrane lipids. (221 aa)
DHFRDihydrofolate reductase; Key enzyme in folate metabolism. Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. Catalyzes an essential reaction for de novo glycine and purine synthesis, and for DNA precursor synthesis. Binds its own mRNA and that of DHFR2. (187 aa)
CEPT1Choline/ethanolaminephosphotransferase 1; Catalyzes both phosphatidylcholine and phosphatidylethanolamine biosynthesis from CDP-choline and CDP- ethanolamine, respectively. Involved in protein-dependent process of phospholipid transport to distribute phosphatidyl choline to the lumenal surface. Has a higher cholinephosphotransferase activity than ethanolaminephosphotransferase activity. (416 aa)
PCYT2Ethanolamine-phosphate cytidylyltransferase; Plays an important role in the biosynthesis of the phospholipid phosphatidylethanolamine. Catalyzes the formation of CDP- ethanolamine. (407 aa)
BCAT1Branched-chain-amino-acid aminotransferase, cytosolic; Catalyzes the first reaction in the catabolism of the essential branched chain amino acids leucine, isoleucine, and valine. (398 aa)
SOD2Superoxide dismutase [Mn], mitochondrial; Destroys superoxide anion radicals which are normally produced within the cells and which are toxic to biological systems. Belongs to the iron/manganese superoxide dismutase family. (222 aa)
MTHFD1LMonofunctional C1-tetrahydrofolate synthase, mitochondrial; May provide the missing metabolic reaction required to link the mitochondria and the cytoplasm in the mammalian model of one-carbon folate metabolism in embryonic an transformed cells complementing thus the enzymatic activities of MTHFD2; In the N-terminal section; belongs to the tetrahydrofolate dehydrogenase/cyclohydrolase family. (979 aa)
CBSLCystathionine beta-synthase like. (565 aa)
PHGDHD-3-phosphoglycerate dehydrogenase; Catalyzes the reversible oxidation of 3-phospho-D-glycerate to 3-phosphonooxypyruvate, the first step of the phosphorylated L- serine biosynthesis pathway. Also catalyzes the reversible oxidation of 2-hydroxyglutarate to 2-oxoglutarate and the reversible oxidation of (S)-malate to oxaloacetate; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (533 aa)
GSSGlutathione synthetase. (474 aa)
GCLCGlutamate-cysteine ligase catalytic subunit. (637 aa)
MTHFD1C-1-tetrahydrofolate synthase, cytoplasmic, N-terminally processed; Methylenetetrahydrofolate dehydrogenase, cyclohydrolase and formyltetrahydrofolate synthetase 1; In the N-terminal section; belongs to the tetrahydrofolate dehydrogenase/cyclohydrolase family. (935 aa)
ETNK1Ethanolamine kinase 1; Highly specific for ethanolamine phosphorylation. May be a rate-controlling step in phosphatidylethanolamine biosynthesis. (452 aa)
CSADCysteine sulfinic acid decarboxylase; Catalyzes the decarboxylation of L-aspartate, 3-sulfino-L- alanine (cysteine sulfinic acid), and L-cysteate to beta-alanine, hypotaurine and taurine, respectively. The preferred substrate is 3- sulfino-L-alanine. Does not exhibit any decarboxylation activity toward glutamate. (520 aa)
SOD1Superoxide dismutase [Cu-Zn]; Destroys radicals which are normally produced within the cells and which are toxic to biological systems; Belongs to the Cu-Zn superoxide dismutase family. (154 aa)
DNMT3LDNA (cytosine-5)-methyltransferase 3-like; Catalytically inactive regulatory factor of DNA methyltransferases that can either promote or inhibit DNA methylation depending on the context (By similarity). Essential for the function of DNMT3A and DNMT3B: activates DNMT3A and DNMT3B by binding to their catalytic domain. Acts by accelerating the binding of DNA and S-adenosyl-L-methionine (AdoMet) to the methyltransferases and dissociates from the complex after DNA binding to the methyltransferases. Recognizes unmethylated histone H3 lysine 4 (H3K4me0) and induces de novo DNA methylation by [...] (387 aa)
AMTAminomethyltransferase, mitochondrial; The glycine cleavage system catalyzes the degradation of glycine; Belongs to the GcvT family. (403 aa)
BHMTBetaine--homocysteine S-methyltransferase 1; Involved in the regulation of homocysteine metabolism. Converts betaine and homocysteine to dimethylglycine and methionine, respectively. This reaction is also required for the irreversible oxidation of choline. (406 aa)
PCYT1ACholine-phosphate cytidylyltransferase A; Controls phosphatidylcholine synthesis; Belongs to the cytidylyltransferase family. (367 aa)
MAT2AS-adenosylmethionine synthase isoform type-2; Catalyzes the formation of S-adenosylmethionine from methionine and ATP. The reaction comprises two steps that are both catalyzed by the same enzyme: formation of S-adenosylmethionine (AdoMet) and triphosphate, and subsequent hydrolysis of the triphosphate; Belongs to the AdoMet synthase family. (395 aa)
TYMSThymidylate synthase; Contributes to the de novo mitochondrial thymidylate biosynthesis pathway. (313 aa)
AHCYL2Adenosylhomocysteinase 3; May regulate the electrogenic sodium/bicarbonate cotransporter SLC4A4 activity and Mg(2+)-sensitivity. On the contrary of its homolog AHCYL1, does not regulate ITPR1 sensitivity to inositol 1,4,5-trisphosphate ; Belongs to the adenosylhomocysteinase family. (611 aa)
SHMT1Serine hydroxymethyltransferase, cytosolic; Interconversion of serine and glycine. (483 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (16%) [HD]