STRINGSTRING
IMPAD1 IMPAD1 B3GAT3 B3GAT3 SLC26A2 SLC26A2 CHST14 CHST14 CANT1 CANT1 XYLT2 XYLT2 CHST3 CHST3 EXT1 EXT1 B3GALT6 B3GALT6 SLC35B3 SLC35B3 SLC35B2 SLC35B2 EXT2 EXT2 PAPSS2 PAPSS2 CSGALNACT1 CSGALNACT1 B4GALT7 B4GALT7 EXTL3 EXTL3 CHSY1 CHSY1 XYLT1 XYLT1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
IMPAD1Golgi-resident adenosine 3',5'-bisphosphate 3'-phosphatase; Exhibits 3'-nucleotidase activity toward adenosine 3',5'- bisphosphate (PAP), namely hydrolyzes adenosine 3',5'-bisphosphate into adenosine 5'-monophosphate (AMP) and a phosphate. May play a role in the formation of skeletal elements derived through endochondral ossification, possibly by clearing adenosine 3',5'-bisphosphate produced by Golgi sulfotransferases during glycosaminoglycan sulfation. Has no activity toward 3'-phosphoadenosine 5'-phosphosulfate (PAPS) or inositol phosphate (IP) substrates including I(1)P, I(1,4)P2, [...] (359 aa)
B3GAT3Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 3; Glycosaminoglycans biosynthesis. Involved in forming the linkage tetrasaccharide present in heparan sulfate and chondroitin sulfate. Transfers a glucuronic acid moiety from the uridine diphosphate-glucuronic acid (UDP-GlcUA) to the common linkage region trisaccharide Gal-beta-1,3-Gal-beta-1,4-Xyl covalently bound to a Ser residue at the glycosaminylglycan attachment site of proteoglycans. Can also play a role in the biosynthesis of l2/HNK-1 carbohydrate epitope on glycoproteins. Shows strict specificity for Gal-beta-1 [...] (335 aa)
SLC26A2Sulfate transporter; Sulfate transporter. May play a role in endochondral bone formation. (739 aa)
CHST14Carbohydrate sulfotransferase 14; Catalyzes the transfer of sulfate to position 4 of the N- acetylgalactosamine (GalNAc) residue of dermatan sulfate. Plays a pivotal role in the formation of 4-0-sulfated IdoA blocks in dermatan sulfate. Transfers sulfate to the C-4 hydroxyl of beta1,4-linked GalNAc that is substituted with an alpha-linked iduronic acid (IdoUA) at the C-3 hydroxyl. Transfers sulfate more efficiently to GalNAc residues in -IdoUA-GalNAc-IdoUA- than in -GlcUA-GalNAc-GlcUA-sequences. Has preference for partially desulfated dermatan sulfate. Addition of sulfate to GalNAc may [...] (376 aa)
CANT1Soluble calcium-activated nucleotidase 1; Calcium-dependent nucleotidase with a preference for UDP. The order of activity with different substrates is UDP > GDP > UTP > GTP. Has very low activity towards ADP and even lower activity towards ATP. Does not hydrolyze AMP and GMP. Involved in proteoglycan synthesis. Belongs to the apyrase family. (401 aa)
XYLT2Xylosyltransferase 2; Catalyzes the first step in the biosynthesis of chondroitin sulfate, heparan sulfate and dermatan sulfate proteoglycans, such as DCN. Transfers D-xylose from UDP-D-xylose to specific serine residues of the core protein; Belongs to the glycosyltransferase 14 family. XylT subfamily. (865 aa)
CHST3Carbohydrate sulfotransferase 3; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the transfer of sulfate to position 6 of the N-acetylgalactosamine (GalNAc) residue of chondroitin. Chondroitin sulfate constitutes the predominant proteoglycan present in cartilage and is distributed on the surfaces of many cells and extracellular matrices. Can also sulfate Gal residues of keratan sulfate, another glycosaminoglycan, and the Gal residues in sialyl N-acetyllactosamine (sialyl LacNAc) oligosaccharides. May play a role in the maintenance of [...] (479 aa)
EXT1Exostosin-1; Glycosyltransferase required for the biosynthesis of heparan- sulfate. The EXT1/EXT2 complex possesses substantially higher glycosyltransferase activity than EXT1 or EXT2 alone. Appears to be a tumor suppressor. Required for the exosomal release of SDCBP, CD63 and syndecan. (746 aa)
B3GALT6Beta-1,3-galactosyltransferase 6; Beta-1,3-galactosyltransferase that transfers galactose from UDP-galactose to substrates with a terminal beta-linked galactose residue. Has a preference for galactose-beta-1,4-xylose that is found in the linker region of glycosaminoglycans, such as heparan sulfate and chondroitin sulfate. Has no activity towards substrates with terminal glucosamine or galactosamine residues. (329 aa)
SLC35B3Adenosine 3'-phospho 5'-phosphosulfate transporter 2; Mediates the transport of adenosine 3'-phospho 5'- phosphosulfate (PAPS), from cytosol into Golgi. PAPS is a universal sulfuryl donor for sulfation events that take place in the Golgi. Compensates for the insufficient expression of SLC35B2/PAPST1 during the synthesis of sulfated glycoconjugates in the colon. (401 aa)
SLC35B2Adenosine 3'-phospho 5'-phosphosulfate transporter 1; Mediates the transport of adenosine 3'-phospho 5'- phosphosulfate (PAPS), from cytosol into Golgi. PAPS is a universal sulfuryl donor for sulfation events that take place in the Golgi. May indirectly participate in activation of the NF-kappa-B and MAPK pathways. (432 aa)
EXT2Exostosin-2; Glycosyltransferase required for the biosynthesis of heparan- sulfate. The EXT1/EXT2 complex possesses substantially higher glycosyltransferase activity than EXT1 or EXT2 alone. Appears to be a tumor suppressor. Required for the exosomal release of SDCBP, CD63 and syndecan. (751 aa)
PAPSS2Bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthase 2; Bifunctional enzyme with both ATP sulfurylase and APS kinase activity, which mediates two steps in the sulfate activation pathway. The first step is the transfer of a sulfate group to ATP to yield adenosine 5'-phosphosulfate (APS), and the second step is the transfer of a phosphate group from ATP to APS yielding 3'-phosphoadenylylsulfate (PAPS: activated sulfate donor used by sulfotransferase). In mammals, PAPS is the sole source of sulfate; APS appears to be only an intermediate in the sulfate-activation pathway. May have [...] (619 aa)
CSGALNACT1Chondroitin sulfate N-acetylgalactosaminyltransferase 1; Transfers 1,4-N-acetylgalactosamine (GalNAc) from UDP-GalNAc to the non-reducing end of glucuronic acid (GlcUA). Required for addition of the first GalNAc to the core tetrasaccharide linker and for elongation of chondroitin chains. Important role in chondroitin chain biosynthesis in cartilage formation and subsequent endochondral ossification. Moreover, is involved in the metabolism of aggrecan (By similarity). (532 aa)
B4GALT7Beta-1,4-galactosyltransferase 7; Required for the biosynthesis of the tetrasaccharide linkage region of proteoglycans, especially for small proteoglycans in skin fibroblasts; Belongs to the glycosyltransferase 7 family. (327 aa)
EXTL3Exostosin-like 3; Glycosyltransferase which regulates the biosynthesis of heparan sulfate (HS). Important for both skeletal development and hematopoiesis, through the formation of HS proteoglycans (HSPGs). Required for the function of REG3A in regulating keratinocyte proliferation and differentiation. (919 aa)
CHSY1Chondroitin sulfate synthase 1; Has both beta-1,3-glucuronic acid and beta-1,4-N- acetylgalactosamine transferase activity. Transfers glucuronic acid (GlcUA) from UDP-GlcUA and N-acetylgalactosamine (GalNAc) from UDP- GalNAc to the non-reducing end of the elongating chondroitin polymer. Involved in the negative control of osteogenesis likely through the modulation of NOTCH signaling. (802 aa)
XYLT1Xylosyltransferase 1; Catalyzes the first step in the biosynthesis of chondroitin sulfate and dermatan sulfate proteoglycans, such as DCN. Transfers D- xylose from UDP-D-xylose to specific serine residues of the core protein. Required for normal embryonic and postnatal skeleton development, especially of the long bones. Required for normal maturation of chondrocytes during bone development, and normal onset of ossification (By similarity). Belongs to the glycosyltransferase 14 family. XylT subfamily. (959 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (20%) [HD]