STRINGSTRING
PAPSS2 PAPSS2 SULT2B1 SULT2B1 GSR GSR SULT2A1 SULT2A1 SULT1E1 SULT1E1 PAPSS1 PAPSS1 SULT1C4 SULT1C4 SULT1B1 SULT1B1 SULT1C2 SULT1C2 SULT4A1 SULT4A1 SULT1C3 SULT1C3 SULT1A4 SULT1A4 G6PD G6PD SULT1A1 SULT1A1 SULT1A2 SULT1A2 SULT6B1 SULT6B1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
PAPSS2Bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthase 2; Bifunctional enzyme with both ATP sulfurylase and APS kinase activity, which mediates two steps in the sulfate activation pathway. The first step is the transfer of a sulfate group to ATP to yield adenosine 5'-phosphosulfate (APS), and the second step is the transfer of a phosphate group from ATP to APS yielding 3'-phosphoadenylylsulfate (PAPS: activated sulfate donor used by sulfotransferase). In mammals, PAPS is the sole source of sulfate; APS appears to be only an intermediate in the sulfate-activation pathway. May have [...] (619 aa)
SULT2B1Sulfotransferase 2B1; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation. Responsible for the sulfation of cholesterol. Catalyzes sulfation of the 3beta-hydroxyl groups of steroids, such as, pregnenolone and dehydroepiandrosterone (DHEA). Preferentially sulfonates cholesterol, while it has also significant activity with pregnenolone and DHEA. Plays a role in epidermal cholesterol metabolism and in the regulation of epidermal proliferation and differentiation. (365 aa)
GSRGlutathione reductase, mitochondrial; Maintains high levels of reduced glutathione in the cytosol. (522 aa)
SULT2A1Bile salt sulfotransferase; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfonation of steroids and bile acids in the liver and adrenal glands. (285 aa)
SULT1E1Sulfotransferase 1E1; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of estradiol and estrone. Is a key enzyme in estrogen homeostasis, the sulfation of estrogens leads to their inactivation. Also sulfates dehydroepiandrosterone (DHEA), pregnenolone, (24S)-hydroxycholesterol and xenobiotic compounds like ethinylestradiol, equalenin, diethyl stilbesterol and 1-naphthol at significantly lower efficiency. Does not sulfonate cortisol, testosterone and dopamine. (294 aa)
PAPSS1Bifunctional 3'-phosphoadenosine 5'-phosphosulfate synthase 1; Bifunctional enzyme with both ATP sulfurylase and APS kinase activity, which mediates two steps in the sulfate activation pathway. The first step is the transfer of a sulfate group to ATP to yield adenosine 5'-phosphosulfate (APS), and the second step is the transfer of a phosphate group from ATP to APS yielding 3'-phosphoadenylylsulfate (PAPS: activated sulfate donor used by sulfotransferase). In mammals, PAPS is the sole source of sulfate; APS appears to be only an intermediate in the sulfate-activation pathway. Required [...] (624 aa)
SULT1C4Sulfotransferase 1C4; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of drugs, xenobiotic compounds, hormones, and neurotransmitters. May be involved in the activation of carcinogenic hydroxylamines. Shows activity towards p-nitrophenol and N-hydroxy-2-acetylamino-fluorene (N-OH-2AAF). (302 aa)
SULT1B1Sulfotransferase family cytosolic 1B member 1; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of many hormones, neurotransmitters, drugs and xenobiotic compounds. Sulfonation increases the water solubility of most compounds, and therefore their renal excretion, but it can also result in bioactivation to form active metabolites. Sulfates dopamine, small phenols such as 1-naphthol and p-nitrophenol and thyroid hormones, including 3,3'-diiodothyronine, triidothyronine, reverse triiodothyronine and thyroxine. (296 aa)
SULT1C2Sulfotransferase 1C2; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of drugs, xenobiotic compounds, hormones, and neurotransmitters. May be involved in the activation of carcinogenic hydroxylamines. Shows activity towards p-nitrophenol and N-hydroxy-2-acetylamino-fluorene (N-OH-2AAF). (307 aa)
SULT4A1Sulfotransferase 4A1; Atypical sulfotransferase family member with very low affinity for 3'-phospho-5'-adenylyl sulfate (PAPS) and very low catalytic activity towards L-triiodothyronine, thyroxine, estrone, p- nitrophenol, 2-naphthylamine, and 2-beta-naphthol. May have a role in the metabolism of drugs and neurotransmitters in the CNS. (284 aa)
SULT1C3Sulfotransferase 1C3; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor and has low sulphotransferase activity towards various substrates with alcohol groups (in vitro). May catalyze the sulfate conjugation of xenobiotic compounds and endogenous substrates. (304 aa)
SULT1A4Sulfotransferase 1A3; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of phenolic monoamines (neurotransmitters such as dopamine, norepinephrine and serotonin) and phenolic and catechol drugs. (295 aa)
G6PDGlucose-6-phosphate 1-dehydrogenase; Cytosolic glucose-6-phosphate dehydrogenase that catalyzes the first and rate-limiting step of the oxidative branch within the pentose phosphate pathway/shunt, an alternative route to glycolysis for the dissimilation of carbohydrates and a major source of reducing power and metabolic intermediates for fatty acid and nucleic acid biosynthetic processes. (515 aa)
SULT1A1Sulfotransferase 1A1; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of catecholamines, phenolic drugs and neurotransmitters. Has also estrogen sulfotransferase activity. responsible for the sulfonation and activation of minoxidil. Is Mediates the metabolic activation of carcinogenic N-hydroxyarylamines to DNA binding products and could so participate as modulating factor of cancer risk. (295 aa)
SULT1A2Sulfotransferase 1A2; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of catecholamines, phenolic drugs and neurotransmitters. Is also responsible for the sulfonation and activation of minoxidil. Mediates the metabolic activation of carcinogenic N-hydroxyarylamines to DNA binding products and could so participate as modulating factor of cancer risk. (295 aa)
SULT6B1Sulfotransferase 6B1; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) as sulfonate donor to catalyze the sulfate conjugation of thyroxine. Involved in the metabolism of thyroxine (By similarity). (265 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (20%) [HD]