STRINGSTRING
HS3ST1 HS3ST1 XYLT2 XYLT2 B4GALT7 B4GALT7 EXTL3 EXTL3 HS6ST1 HS6ST1 HS3ST2 HS3ST2 XYLT1 XYLT1 NDST1 NDST1 GLCE GLCE NDST4 NDST4 B3GAT3 B3GAT3 HS3ST3A1 HS3ST3A1 NDST3 NDST3 NDST2 NDST2 HS3ST3B1 HS3ST3B1 EXTL2 EXTL2 HS2ST1 HS2ST1 EXTL1 EXTL1 HS6ST3 HS6ST3 EXT1 EXT1 B3GALT6 B3GALT6 EXT2 EXT2 HS3ST5 HS3ST5
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
HS3ST1Heparan sulfate glucosamine 3-O-sulfotransferase 1; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) to catalyze the transfer of a sulfo group to position 3 of glucosamine residues in heparan. Catalyzes the rate limiting step in the biosynthesis of heparan sulfate (HSact). This modification is a crucial step in the biosynthesis of anticoagulant heparan sulfate as it completes the structure of the antithrombin pentasaccharide binding site. (307 aa)
XYLT2Xylosyltransferase 2; Catalyzes the first step in the biosynthesis of chondroitin sulfate, heparan sulfate and dermatan sulfate proteoglycans, such as DCN. Transfers D-xylose from UDP-D-xylose to specific serine residues of the core protein; Belongs to the glycosyltransferase 14 family. XylT subfamily. (865 aa)
B4GALT7Beta-1,4-galactosyltransferase 7; Required for the biosynthesis of the tetrasaccharide linkage region of proteoglycans, especially for small proteoglycans in skin fibroblasts; Belongs to the glycosyltransferase 7 family. (327 aa)
EXTL3Exostosin-like 3; Glycosyltransferase which regulates the biosynthesis of heparan sulfate (HS). Important for both skeletal development and hematopoiesis, through the formation of HS proteoglycans (HSPGs). Required for the function of REG3A in regulating keratinocyte proliferation and differentiation. (919 aa)
HS6ST1Heparan-sulfate 6-O-sulfotransferase 1; 6-O-sulfation enzyme which catalyzes the transfer of sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to position 6 of the N-sulfoglucosamine residue (GlcNS) of heparan sulfate. Critical for normal neuronal development where it may play a role in neuron branching. May also play a role in limb development. May prefer iduronic acid. (411 aa)
HS3ST2Heparan sulfate glucosamine 3-O-sulfotransferase 2; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) to catalyze the transfer of a sulfo group to an N-unsubstituted glucosamine linked to a 2-O-sulfo iduronic acid unit on heparan sulfate. Catalyzes the O-sulfation of glucosamine in GlcA2S-GlcNS. Unlike 3-OST-1, does not convert non-anticoagulant heparan sulfate to anticoagulant heparan sulfate. (367 aa)
XYLT1Xylosyltransferase 1; Catalyzes the first step in the biosynthesis of chondroitin sulfate and dermatan sulfate proteoglycans, such as DCN. Transfers D- xylose from UDP-D-xylose to specific serine residues of the core protein. Required for normal embryonic and postnatal skeleton development, especially of the long bones. Required for normal maturation of chondrocytes during bone development, and normal onset of ossification (By similarity). Belongs to the glycosyltransferase 14 family. XylT subfamily. (959 aa)
NDST1Bifunctional heparan sulfate N-deacetylase/N-sulfotransferase 1; Essential bifunctional enzyme that catalyzes both the N- deacetylation and the N-sulfation of glucosamine (GlcNAc) of the glycosaminoglycan in heparan sulfate. Modifies the GlcNAc-GlcA disaccharide repeating sugar backbone to make N-sulfated heparosan, a prerequisite substrate for later modifications in heparin biosynthesis. Plays a role in determining the extent and pattern of sulfation of heparan sulfate. Compared to other NDST enzymes, its presence is absolutely required. Participates in biosynthesis of heparan sulfate [...] (882 aa)
GLCED-glucuronyl C5-epimerase; Converts D-glucuronic acid residues adjacent to N-sulfate sugar residues to L-iduronic acid residues, both in maturing heparan sulfate (HS) and heparin chains. This is important for further modifications that determine the specificity of interactions between these glycosaminoglycans and proteins; Belongs to the D-glucuronyl C5-epimerase family. (617 aa)
NDST4Bifunctional heparan sulfate N-deacetylase/N-sulfotransferase 4; Essential bifunctional enzyme that catalyzes both the N- deacetylation and the N-sulfation of glucosamine (GlcNAc) of the glycosaminoglycan in heparan sulfate. Modifies the GlcNAc-GlcA disaccharide repeating sugar backbone to make N-sulfated heparosan, a prerequisite substrate for later modifications in heparin biosynthesis. Has low deacetylase activity but high sulfotransferase activity (By similarity); Belongs to the sulfotransferase 1 family. NDST subfamily. (872 aa)
B3GAT3Galactosylgalactosylxylosylprotein 3-beta-glucuronosyltransferase 3; Glycosaminoglycans biosynthesis. Involved in forming the linkage tetrasaccharide present in heparan sulfate and chondroitin sulfate. Transfers a glucuronic acid moiety from the uridine diphosphate-glucuronic acid (UDP-GlcUA) to the common linkage region trisaccharide Gal-beta-1,3-Gal-beta-1,4-Xyl covalently bound to a Ser residue at the glycosaminylglycan attachment site of proteoglycans. Can also play a role in the biosynthesis of l2/HNK-1 carbohydrate epitope on glycoproteins. Shows strict specificity for Gal-beta-1 [...] (335 aa)
HS3ST3A1Heparan sulfate glucosamine 3-O-sulfotransferase 3A1; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) to catalyze the transfer of a sulfo group to an N-unsubstituted glucosamine linked to a 2-O-sulfo iduronic acid unit on heparan sulfate. Catalyzes the O-sulfation of glucosamine in IdoUA2S-GlcNS and also in IdoUA2S-GlcNH2. The substrate-specific O-sulfation generates an enzyme-modified heparan sulfate which acts as a binding receptor to Herpes simplex virus-1 (HSV-1) and permits its entry. Unlike 3-OST-1, does not convert non-anticoagulant heparan sulfate to antico [...] (406 aa)
NDST3Bifunctional heparan sulfate N-deacetylase/N-sulfotransferase 3; Essential bifunctional enzyme that catalyzes both the N- deacetylation and the N-sulfation of glucosamine (GlcNAc) of the glycosaminoglycan in heparan sulfate. Modifies the GlcNAc-GlcA disaccharide repeating sugar backbone to make N-sulfated heparosan, a prerequisite substrate for later modifications in heparin biosynthesis. Has high deacetylase activity but low sulfotransferase activity. (873 aa)
NDST2Bifunctional heparan sulfate N-deacetylase/N-sulfotransferase 2; Essential bifunctional enzyme that catalyzes both the N- deacetylation and the N-sulfation of glucosamine (GlcNAc) of the glycosaminoglycan in heparan sulfate. Modifies the GlcNAc-GlcA disaccharide repeating sugar backbone to make N-sulfated heparosan, a prerequisite substrate for later modifications in heparin biosynthesis. Plays a role in determining the extent and pattern of sulfation of heparan sulfate. Required for the exosomal release of SDCBP, CD63 and syndecan. (883 aa)
HS3ST3B1Heparan sulfate glucosamine 3-O-sulfotransferase 3B1; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) to catalyze the transfer of a sulfo group to an N-unsubstituted glucosamine linked to a 2-O-sulfo iduronic acid unit on heparan sulfate. Catalyzes the O-sulfation of glucosamine in IdoUA2S-GlcNS and also in IdoUA2S-GlcNH2. The substrate-specific O-sulfation generates an enzyme-modified heparan sulfate which acts as a binding receptor to Herpes simplex virus-1 (HSV-1) and permits its entry. Unlike 3-OST-1, does not convert non-anticoagulant heparan sulfate to antico [...] (390 aa)
EXTL2Processed exostosin-like 2; Glycosyltransferase required for the biosynthesis of heparan- sulfate and responsible for the alternating addition of beta-1-4-linked glucuronic acid (GlcA) and alpha-1-4-linked N-acetylglucosamine (GlcNAc) units to nascent heparan sulfate chains. (330 aa)
HS2ST1Heparan sulfate 2-O-sulfotransferase 1; Catalyzes the transfer of sulfate to the C2-position of selected hexuronic acid residues within the maturing heparan sulfate (HS). 2-O-sulfation within HS, particularly of iduronate residues, is essential for HS to participate in a variety of high-affinity ligand- binding interactions and signaling processes. Mediates 2-O-sulfation of both L-iduronyl and D-glucuronyl residues (By similarity). (356 aa)
EXTL1Exostosin-like 1; Probable glycosyltransferase; Belongs to the glycosyltransferase 47 family. (676 aa)
HS6ST3Heparan-sulfate 6-O-sulfotransferase 3; 6-O-sulfation enzyme which catalyzes the transfer of sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to position 6 of the N-sulfoglucosamine residue (GlcNS) of heparan sulfate. (471 aa)
EXT1Exostosin-1; Glycosyltransferase required for the biosynthesis of heparan- sulfate. The EXT1/EXT2 complex possesses substantially higher glycosyltransferase activity than EXT1 or EXT2 alone. Appears to be a tumor suppressor. Required for the exosomal release of SDCBP, CD63 and syndecan. (746 aa)
B3GALT6Beta-1,3-galactosyltransferase 6; Beta-1,3-galactosyltransferase that transfers galactose from UDP-galactose to substrates with a terminal beta-linked galactose residue. Has a preference for galactose-beta-1,4-xylose that is found in the linker region of glycosaminoglycans, such as heparan sulfate and chondroitin sulfate. Has no activity towards substrates with terminal glucosamine or galactosamine residues. (329 aa)
EXT2Exostosin-2; Glycosyltransferase required for the biosynthesis of heparan- sulfate. The EXT1/EXT2 complex possesses substantially higher glycosyltransferase activity than EXT1 or EXT2 alone. Appears to be a tumor suppressor. Required for the exosomal release of SDCBP, CD63 and syndecan. (751 aa)
HS3ST5Heparan sulfate glucosamine 3-O-sulfotransferase 5; Sulfotransferase that utilizes 3'-phospho-5'-adenylyl sulfate (PAPS) to catalyze the transfer of a sulfo group to position 3 of glucosamine residues in heparan. Catalyzes the rate limiting step in the biosynthesis of heparan sulfate (HSact). This modification is a crucial step in the biosynthesis of anticoagulant heparan sulfate as it completes the structure of the antithrombin pentasaccharide binding site. Also generates GlcUA-GlcNS or IdoUA-GlcNS and IdoUA2S-GlcNH2. The substrate-specific O-sulfation generates an enzyme-modified hep [...] (346 aa)
Your Current Organism:
Homo sapiens
NCBI taxonomy Id: 9606
Other names: H. sapiens, human, man
Server load: low (22%) [HD]