Your Input: | |||||
PIK3R2 | Phosphatidylinositol 3-kinase regulatory subunit beta; Regulatory subunit of phosphoinositide-3-kinase (PI3K), a kinase that phosphorylates PtdIns(4,5)P2 (Phosphatidylinositol 4,5- bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Binds to activated (phosphorylated) protein- tyrosine kinases, through its SH2 domain, and acts as an adapter, mediating t [...] (728 aa) | ||||
LIPE | Hormone-sensitive lipase; In adipose tissue and heart, it primarily hydrolyzes stored triglycerides to free fatty acids, while in steroidogenic tissues, it principally converts cholesteryl esters to free cholesterol for steroid hormone production. (1076 aa) | ||||
FABP4 | Fatty acid-binding protein, adipocyte; Lipid transport protein in adipocytes. Binds both long chain fatty acids and retinoic acid. Delivers long-chain fatty acids and retinoic acid to their cognate receptors in the nucleus. Belongs to the calycin superfamily. Fatty-acid binding protein (FABP) family. (132 aa) | ||||
TSHB | Thyrotropin subunit beta; Indispensable for the control of thyroid structure and metabolism; Belongs to the glycoprotein hormones subunit beta family. (138 aa) | ||||
PIK3R3 | Phosphatidylinositol 3-kinase regulatory subunit gamma; Binds to activated (phosphorylated) protein-tyrosine kinases through its SH2 domain and regulates their kinase activity. During insulin stimulation, it also binds to IRS-1. (461 aa) | ||||
PIK3CA | Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform; Phosphoinositide-3-kinase (PI3K) that phosphorylates PtdIns (Phosphatidylinositol), PtdIns4P (Phosphatidylinositol 4-phosphate) and PtdIns(4,5)P2 (Phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Participates in cellular signaling in response to v [...] (1068 aa) | ||||
PRKG2 | cGMP-dependent protein kinase 2; Crucial regulator of intestinal secretion and bone growth (By similarity). Phosphorylates and activates CFTR on the plasma membrane. Plays a key role in intestinal secretion by regulating cGMP-dependent translocation of CFTR in jejunum (By similarity). Acts downstream of NMDAR to activate the plasma membrane accumulation of GRIA1/GLUR1 in synapse and increase synaptic plasticity. Phosphorylates GRIA1/GLUR1 at Ser-863 (By similarity). Acts as regulator of gene expression and activator of the extracellular signal-regulated kinases MAPK3/ERK1 and MAPK1/ERK [...] (762 aa) | ||||
MGLL | Monoglyceride lipase; Converts monoacylglycerides to free fatty acids and glycerol. Hydrolyzes the endocannabinoid 2- arachidonoylglycerol, and thereby contributes to the regulation of endocannabinoid signaling, nociperception and perception of pain. Regulates the levels of fatty acids that serve as signaling molecules and promote cancer cell migration, invasion and tumor growth. Belongs to the AB hydrolase superfamily. Monoacylglycerol lipase family. (313 aa) | ||||
PDE3B | cGMP-inhibited 3',5'-cyclic phosphodiesterase B; Cyclic nucleotide phosphodiesterase with a dual-specificity for the second messengers cAMP and cGMP, which are key regulators of many important physiological processes. May play a role in fat metabolism. Regulates cAMP binding of RAPGEF3. Through simultaneous binding to RAPGEF3 and PIK3R6 assembles a signaling complex in which the PI3K gamma complex is activated by RAPGEF3 and which is involved in angiogenesis. (1112 aa) | ||||
ADCY8 | Adenylate cyclase type 8; Catalyzes the formation of cAMP in response to calcium entry leadings to cAMP signaling activation that affect processes suche as synaptic plasticity and insulin secretion. Plays a role in many brain functions, such as learning, memory, drug addiction, and anxiety modulation through regulation of synaptic plasticity by modulating long-term memory and long-term potentiation (LTP) through CREB transcription factor activity modulation. Plays a central role in insulin secretion by controlling glucose homeostasis through glucagon- like peptide 1 and glucose signali [...] (1251 aa) | ||||
ADCY9 | Adenylate cyclase type 9; Adenylyl cyclase that catalyzes the formation of the signaling molecule cAMP in response to activation of G protein-coupled receptors. Contributes to signaling cascades activated by CRH (corticotropin-releasing factor), corticosteroids and beta-adrenergic receptors. (1353 aa) | ||||
ADCY1 | Adenylate cyclase type 1; Catalyzes the formation of the signaling molecule cAMP in response to G-protein signaling. Mediates responses to increased cellular Ca(2+)/calmodulin levels (By similarity). May be involved in regulatory processes in the central nervous system. May play a role in memory and learning. Plays a role in the regulation of the circadian rhythm of daytime contrast sensitivity probably by modulating the rhythmic synthesis of cyclic AMP in the retina (By similarity). Belongs to the adenylyl cyclase class-4/guanylyl cyclase family. (1119 aa) | ||||
AQP7 | Aquaporin-7; Forms a channel that mediates water and glycerol transport across cell membranes at neutral pH. The channel is also permeable to urea. Plays an important role in body energy homeostasis under conditions that promote lipid catabolism, giving rise to glycerol and free fatty acids. Mediates glycerol export from adipocytes. After release into the blood stream, glycerol is used for gluconeogenesis in the liver to maintain normal blood glucose levels and prevent fasting hypoglycemia. Required for normal glycerol reabsorption in the kidney (By similarity). Belongs to the MIP/aqua [...] (342 aa) | ||||
PLIN1 | Perilipin-1; Modulator of adipocyte lipid metabolism. Coats lipid storage droplets to protect them from breakdown by hormone-sensitive lipase (HSL). Its absence may result in leanness. Plays a role in unilocular lipid droplet formation by activating CIDEC. Their interaction promotes lipid droplet enlargement and directional net neutral lipid transfer. May modulate lipolysis and triglyceride levels. Belongs to the perilipin family. (522 aa) | ||||
INSR | Insulin receptor subunit alpha; Receptor tyrosine kinase which mediates the pleiotropic actions of insulin. Binding of insulin leads to phosphorylation of several intracellular substrates, including, insulin receptor substrates (IRS1, 2, 3, 4), SHC, GAB1, CBL and other signaling intermediates. Each of these phosphorylated proteins serve as docking proteins for other signaling proteins that contain Src-homology-2 domains (SH2 domain) that specifically recognize different phosphotyrosine residues, including the p85 regulatory subunit of PI3K and SHP2. Phosphorylation of IRSs proteins lea [...] (1382 aa) | ||||
IRS1 | Insulin receptor substrate 1; May mediate the control of various cellular processes by insulin. When phosphorylated by the insulin receptor binds specifically to various cellular proteins containing SH2 domains such as phosphatidylinositol 3-kinase p85 subunit or GRB2. Activates phosphatidylinositol 3-kinase when bound to the regulatory p85 subunit (By similarity). (1242 aa) | ||||
ADRB2 | Beta-2 adrenergic receptor; Beta-adrenergic receptors mediate the catecholamine-induced activation of adenylate cyclase through the action of G proteins. The beta-2-adrenergic receptor binds epinephrine with an approximately 30- fold greater affinity than it does norepinephrine. Belongs to the G-protein coupled receptor 1 family. Adrenergic receptor subfamily. ADRB2 sub-subfamily. (413 aa) | ||||
PRKACA | cAMP-dependent protein kinase catalytic subunit alpha; Phosphorylates a large number of substrates in the cytoplasm and the nucleus. Regulates the abundance of compartmentalized pools of its regulatory subunits through phosphorylation of PJA2 which binds and ubiquitinates these subunits, leading to their subsequent proteolysis. Phosphorylates CDC25B, ABL1, NFKB1, CLDN3, PSMC5/RPT6, PJA2, RYR2, RORA and VASP. RORA is activated by phosphorylation. Required for glucose- mediated adipogenic differentiation increase and osteogenic differentiation inhibition from osteoblasts. Involved in the [...] (351 aa) | ||||
ADCY6 | Adenylate cyclase type 6; Catalyzes the formation of the signaling molecule cAMP downstream of G protein-coupled receptors. Functions in signaling cascades downstream of beta- adrenergic receptors in the heart and in vascular smooth muscle cells. Functions in signaling cascades downstream of the vasopressin receptor in the kidney and has a role in renal water reabsorption. Functions in signaling cascades downstream of PTH1R and plays a role in regulating renal phosphate excretion. Functions in signaling cascades downstream of the VIP and SCT receptors in pancreas and contributes to the [...] (1168 aa) | ||||
ADCY4 | Adenylate cyclase type 4; Catalyzes the formation of the signaling molecule cAMP in response to G-protein signaling. (1077 aa) | ||||
GNAI2 | Guanine nucleotide-binding protein G(i) subunit alpha-2; Guanine nucleotide-binding proteins (G proteins) are involved as modulators or transducers in various transmembrane signaling systems. The G(i) proteins are involved in hormonal regulation of adenylate cyclase: they inhibit the cyclase in response to beta- adrenergic stimuli. May play a role in cell division. (355 aa) | ||||
PLAAT3 | Phospholipase A and acyltransferase 3; Exhibits both phospholipase A1/2 and acyltransferase activities. Shows phospholipase A1 (PLA1) and A2 (PLA2) activity, catalyzing the calcium-independent release of fatty acids from the sn-1 or sn-2 position of glycerophospholipids. For most substrates, PLA1 activity is much higher than PLA2 activity. Shows O-acyltransferase activity,catalyzing the transfer of a fatty acyl group from glycerophospholipid to the hydroxyl group of lysophospholipid. Shows N-acyltransferase activity, catalyzing the calcium-independent transfer of a fatty acyl group at [...] (162 aa) | ||||
PNPLA2 | Patatin-like phospholipase domain-containing protein 2; Catalyzes the initial step in triglyceride hydrolysis in adipocyte and non-adipocyte lipid droplets. Also has acylglycerol transacylase activity. May act coordinately with LIPE/HLS within the lipolytic cascade. Regulates adiposome size and may be involved in the degradation of adiposomes. May play an important role in energy homeostasis. May play a role in the response of the organism to starvation, enhancing hydrolysis of triglycerides and providing free fatty acids to other tissues to be oxidized in situations of energy depletion. (504 aa) | ||||
ADCY2 | Adenylate cyclase type 2; Catalyzes the formation of the signaling molecule cAMP in response to G-protein signaling. Down-stream signaling cascades mediate changes in gene expression patterns and lead to increased IL6 production. Functions in signaling cascades downstream of the muscarinic acetylcholine receptors (By similarity). Belongs to the adenylyl cyclase class-4/guanylyl cyclase family. (1091 aa) | ||||
ADRB3 | Beta-3 adrenergic receptor; Beta-adrenergic receptors mediate the catecholamine-induced activation of adenylate cyclase through the action of G proteins. Beta- 3 is involved in the regulation of lipolysis and thermogenesis. (408 aa) | ||||
PTGER3 | Prostaglandin E2 receptor EP3 subtype; Receptor for prostaglandin E2 (PGE2). The activity of this receptor can couple to both the inhibition of adenylate cyclase mediated by G(i) proteins, and to an elevation of intracellular calcium. Required for normal development of fever in response to pyrinogens, including IL1B, prostaglandin E2 and bacterial lipopolysaccharide (LPS). Required for normal potentiation of platelet aggregation by prostaglandin E2, and thus plays a role in the regulation of blood coagulation. Required for increased HCO3(-) secretion in the duodenum in response to muco [...] (418 aa) | ||||
PTGS1 | Prostaglandin G/H synthase 1; Converts arachidonate to prostaglandin H2 (PGH2), a committed step in prostanoid synthesis. Involved in the constitutive production of prostanoids in particular in the stomach and platelets. In gastric epithelial cells, it is a key step in the generation of prostaglandins, such as prostaglandin E2 (PGE2), which plays an important role in cytoprotection. In platelets, it is involved in the generation of thromboxane A2 (TXA2), which promotes platelet activation and aggregation, vasoconstriction and proliferation of vascular smooth muscle cells; Belongs to th [...] (599 aa) | ||||
NPY1R | Neuropeptide Y receptor type 1; Receptor for neuropeptide Y and peptide YY. The rank order of affinity of this receptor for pancreatic polypeptides is NPY > [Pro-34] PYY, PYY and [Leu-31, Pro-34] NPY > NPY (2-36) > [Ile-31, Gln-34] PP and PYY (3-36) > PP > NPY free acid. (384 aa) | ||||
ADORA1 | Adenosine receptor A1; Receptor for adenosine. The activity of this receptor is mediated by G proteins which inhibit adenylyl cyclase; Belongs to the G-protein coupled receptor 1 family. (326 aa) | ||||
PTGS2 | Prostaglandin G/H synthase 2; Converts arachidonate to prostaglandin H2 (PGH2), a committed step in prostanoid synthesis. Constitutively expressed in some tissues in physiological conditions, such as the endothelium, kidney and brain, and in pathological conditions, such as in cancer. PTGS2 is responsible for production of inflammatory prostaglandins. Up-regulation of PTGS2 is also associated with increased cell adhesion, phenotypic changes, resistance to apoptosis and tumor angiogenesis. In cancer cells, PTGS2 is a key step in the production of prostaglandin E2 (PGE2), which plays imp [...] (604 aa) | ||||
NPR1 | Atrial natriuretic peptide receptor 1; Receptor for the atrial natriuretic peptide NPPA/ANP and the brain natriuretic peptide NPPB/BNP which are potent vasoactive hormones playing a key role in cardiovascular homeostasis. Has guanylate cyclase activity upon binding of the ligand. (1061 aa) | ||||
ADRB1 | Beta-1 adrenergic receptor; Beta-adrenergic receptors mediate the catecholamine-induced activation of adenylate cyclase through the action of G proteins. This receptor binds epinephrine and norepinephrine with approximately equal affinity. Mediates Ras activation through G(s)-alpha- and cAMP-mediated signaling. Involved in the regulation of sleep/wake behaviors ; Belongs to the G-protein coupled receptor 1 family. Adrenergic receptor subfamily. ADRB1 sub-subfamily. (477 aa) | ||||
GNAI3 | Guanine nucleotide-binding protein G(i) subunit alpha; Heterotrimeric guanine nucleotide-binding proteins (G proteins) function as transducers downstream of G protein-coupled receptors (GPCRs) in numerous signaling cascades. The alpha chain contains the guanine nucleotide binding site and alternates between an active, GTP-bound state and an inactive, GDP-bound state. Signaling by an activated GPCR promotes GDP release and GTP binding. The alpha subunit has a low GTPase activity that converts bound GTP to GDP, thereby terminating the signal. Both GDP release and GTP hydrolysis are modul [...] (354 aa) | ||||
PRKACB | cAMP-dependent protein kinase catalytic subunit beta; Mediates cAMP-dependent signaling triggered by receptor binding to GPCRs. PKA activation regulates diverse cellular processes such as cell proliferation, the cell cycle, differentiation and regulation of microtubule dynamics, chromatin condensation and decondensation, nuclear envelope disassembly and reassembly, as well as regulation of intracellular transport mechanisms and ion flux. Regulates the abundance of compartmentalized pools of its regulatory subunits through phosphorylation of PJA2 which binds and ubiquitinates these subu [...] (398 aa) | ||||
GNAS | Guanine nucleotide-binding protein G(s) subunit alpha isoforms XLas; Guanine nucleotide-binding proteins (G proteins) function as transducers in numerous signaling pathways controlled by G protein- coupled receptors (GPCRs). Signaling involves the activation of adenylyl cyclases, resulting in increased levels of the signaling molecule cAMP. GNAS functions downstream of several GPCRs, including beta-adrenergic receptors. XLas isoforms interact with the same set of receptors as GNAS isoforms (By similarity). (1037 aa) | ||||
IRS4 | Insulin receptor substrate 4; Acts as an interface between multiple growth factor receptors possessing tyrosine kinase activity, such as insulin receptor, IGF1R and FGFR1, and a complex network of intracellular signaling molecules containing SH2 domains. Involved in the IGF1R mitogenic signaling pathway. Promotes the AKT1 signaling pathway and BAD phosphorylation during insulin stimulation without activation of RPS6KB1 or the inhibition of apoptosis. Interaction with GRB2 enhances insulin- stimulated mitogen-activated protein kinase activity. May be involved in nonreceptor tyrosine kin [...] (1257 aa) | ||||
PRKG1 | cGMP-dependent protein kinase 1; Serine/threonine protein kinase that acts as key mediator of the nitric oxide (NO)/cGMP signaling pathway. GMP binding activates PRKG1, which phosphorylates serines and threonines on many cellular proteins. Numerous protein targets for PRKG1 phosphorylation are implicated in modulating cellular calcium, but the contribution of each of these targets may vary substantially among cell types. Proteins that are phosphorylated by PRKG1 regulate platelet activation and adhesion, smooth muscle contraction, cardiac function, gene expression, feedback of the NO-s [...] (686 aa) | ||||
IRS2 | Insulin receptor substrate 2; May mediate the control of various cellular processes by insulin. (1338 aa) | ||||
NPPA | Atrial natriuretic factor; Hormone playing a key role in cardiovascular homeostasis through regulation of natriuresis, diuresis, and vasodilation. Also plays a role in female pregnancy by promoting trophoblast invasion and spiral artery remodeling in uterus. Specifically binds and stimulates the cGMP production of the NPR1 receptor. Binds the clearance receptor NPR3. (151 aa) | ||||
PRKACG | cAMP-dependent protein kinase catalytic subunit gamma; Phosphorylates a large number of substrates in the cytoplasm and the nucleus. (351 aa) | ||||
PIK3CD | Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit delta isoform; Phosphoinositide-3-kinase (PI3K) that phosphorylates PtdIns(4,5)P2 (Phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Mediates immune responses. Plays a role in B-cell development, proliferation, migration, and function. Required for B-cell recepto [...] (1044 aa) | ||||
AKT2 | RAC-beta serine/threonine-protein kinase; AKT2 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of the [...] (481 aa) | ||||
INS | Insulin A chain; Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver. (110 aa) | ||||
NPY | C-flanking peptide of NPY; NPY is implicated in the control of feeding and in secretion of gonadotrophin-release hormone; Belongs to the NPY family. (97 aa) | ||||
ADCY3 | Adenylate cyclase type 3; Catalyzes the formation of the signaling molecule cAMP in response to G-protein signaling. Participates in signaling cascades triggered by odorant receptors via its function in cAMP biosynthesis. Required for the perception of odorants. Required for normal sperm motility and normal male fertility. Plays a role in regulating insulin levels and body fat accumulation in response to a high fat diet. (1145 aa) | ||||
ADCY5 | Adenylate cyclase type 5; Catalyzes the formation of the signaling molecule cAMP in response to G-protein signaling. Mediates signaling downstream of ADRB1. Regulates the increase of free cytosolic Ca(2+) in response to increased blood glucose levels and contributes to the regulation of Ca(2+)-dependent insulin secretion. (1261 aa) | ||||
PIK3R1 | Phosphatidylinositol 3-kinase regulatory subunit alpha; Binds to activated (phosphorylated) protein-Tyr kinases, through its SH2 domain, and acts as an adapter, mediating the association of the p110 catalytic unit to the plasma membrane. Necessary for the insulin-stimulated increase in glucose uptake and glycogen synthesis in insulin-sensitive tissues. Plays an important role in signaling in response to FGFR1, FGFR2, FGFR3, FGFR4, KITLG/SCF, KIT, PDGFRA and PDGFRB. Likewise, plays a role in ITGB2 signaling. Modulates the cellular response to ER stress by promoting nuclear translocation [...] (724 aa) | ||||
TSHR | Thyrotropin receptor; Receptor for the thyroid-stimulating hormone (TSH) or thyrotropin. Also acts as a receptor for the heterodimeric glycoprotein hormone (GPHA2:GPHB5) or thyrostimulin. The activity of this receptor is mediated by G proteins which activate adenylate cyclase. Plays a central role in controlling thyroid cell metabolism (By similarity); Belongs to the G-protein coupled receptor 1 family. FSH/LSH/TSH subfamily. (764 aa) | ||||
AKT1 | RAC-alpha serine/threonine-protein kinase; AKT1 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT is responsible of the regulation of glucose uptake by mediating insulin-induced translocation of the [...] (480 aa) | ||||
ABHD5 | 1-acylglycerol-3-phosphate O-acyltransferase ABHD5; Coenzyme A-dependent lysophosphatidic acid acyltransferase that catalyzes the transfert of an acyl group on a lysophosphatidic acid. Functions preferentially with 1-oleoyl- lysophosphatidic acid followed by 1-palmitoyl-lysophosphatidic acid, 1- stearoyl-lysophosphatidic acid and 1-arachidonoyl-lysophosphatidic acid as lipid acceptor. Functions preferentially with arachidonoyl-CoA followed by oleoyl-CoA as acyl group donors (By similarity). Functions in phosphatidic acid biosynthesis. May regulate the cellular storage of triacylglycero [...] (349 aa) | ||||
GNAI1 | Guanine nucleotide-binding protein G(i) subunit alpha-1; Guanine nucleotide-binding proteins (G proteins) function as transducers downstream of G protein-coupled receptors (GPCRs) in numerous signaling cascades. The alpha chain contains the guanine nucleotide binding site and alternates between an active, GTP-bound state and an inactive, GDP-bound state. Signaling by an activated GPCR promotes GDP release and GTP binding. The alpha subunit has a low GTPase activity that converts bound GTP to GDP, thereby terminating the signal. Both GDP release and GTP hydrolysis are modulated by numer [...] (354 aa) | ||||
AKT3 | RAC-gamma serine/threonine-protein kinase; AKT3 is one of 3 closely related serine/threonine-protein kinases (AKT1, AKT2 and AKT3) called the AKT kinase, and which regulate many processes including metabolism, proliferation, cell survival, growth and angiogenesis. This is mediated through serine and/or threonine phosphorylation of a range of downstream substrates. Over 100 substrate candidates have been reported so far, but for most of them, no isoform specificity has been reported. AKT3 is the least studied AKT isoform. It plays an important role in brain development and is crucial fo [...] (479 aa) | ||||
ADCY7 | Adenylate cyclase type 7; Catalyzes the formation of cAMP in response to activation of G protein-coupled receptors (Probable). Functions in signaling cascades activated namely by thrombin and sphingosine 1-phosphate and mediates regulation of cAMP synthesis through synergistic action of the stimulatory G alpha protein with GNA13. Also, during inflammation, mediates zymosan-induced increase intracellular cAMP, leading to protein kinase A pathway activation in order to modulate innate immune responses through heterotrimeric G proteins G(12/13) (By similarity). Functions in signaling casc [...] (1080 aa) | ||||
PIK3CB | Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit beta isoform; Phosphoinositide-3-kinase (PI3K) that phosphorylates PtdIns (Phosphatidylinositol), PtdIns4P (Phosphatidylinositol 4-phosphate) and PtdIns(4,5)P2 (Phosphatidylinositol 4,5-bisphosphate) to generate phosphatidylinositol 3,4,5-trisphosphate (PIP3). PIP3 plays a key role by recruiting PH domain-containing proteins to the membrane, including AKT1 and PDPK1, activating signaling cascades involved in cell growth, survival, proliferation, motility and morphology. Involved in the activation of AKT1 upon stimulation [...] (1070 aa) |