STRINGSTRING
ND5 ND5 ALB ALB CNRIP1 CNRIP1 PLD1 PLD1 POLI POLI ETS1 ETS1 EGF EGF IGFN1 IGFN1 GRIK3 GRIK3 PLD2 PLD2 IHH IHH MYCT1 MYCT1 ND2 ND2 ATP6 ATP6 ND3 ND3 ND4L ND4L PLA2G4D PLA2G4D
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
ND5NADH-ubiquinone oxidoreductase chain 5; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (606 aa)
ALBSerum albumin; Serum albumin, the main protein of plasma, has a good binding capacity for water, Ca(2+), Na(+), K(+), fatty acids, hormones, bilirubin and drugs. Its main function is the regulation of the colloidal osmotic pressure of blood. Major zinc transporter in plasma, typically binds about 80% of all plasma zinc (By similarity). Major calcium and magnesium transporter in plasma, binds approximately 45% of circulating calcium and magnesium in plasma (By similarity). Potentially has more than two calcium-binding sites and might additionally bind calcium in a non-specific manner (B [...] (618 aa)
CNRIP1Uncharacterized protein. (324 aa)
PLD1Phospholipase. (1074 aa)
POLIDNA polymerase iota. (873 aa)
ETS1ETS proto-oncogene 1, transcription factor. (503 aa)
EGFPro-epidermal growth factor; EGF stimulates the growth of various epidermal and epithelial tissues in vivo and in vitro and of some fibroblasts in cell culture. Magnesiotropic hormone that stimulates magnesium reabsorption in the renal distal convoluted tubule via engagement of EGFR and activation of the magnesium channel TRPM6 (By similarity). (1213 aa)
IGFN1Immunoglobulin like and fibronectin type III domain containing 1. (1253 aa)
GRIK3Glutamate ionotropic receptor kainate type subunit 3. (919 aa)
PLD2Phospholipase. (984 aa)
IHHHedgehog protein; Intercellular signal essential for a variety of patterning events during development. (410 aa)
MYCT1MYC target 1. (229 aa)
ND2NADH-ubiquinone oxidoreductase chain 2; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (347 aa)
ATP6ATP synthase subunit a; Mitochondrial membrane ATP synthase (F(1)F(0) ATP synthase or Complex V) produces ATP from ADP in the presence of a proton gradient across the membrane which is generated by electron transport complexes of the respiratory chain. F-type ATPases consist of two structural domains, F(1) - containing the extramembraneous catalytic core and F(0) - containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subuni [...] (226 aa)
ND3NADH-ubiquinone oxidoreductase chain 3; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (115 aa)
ND4LNADH-ubiquinone oxidoreductase chain 4L; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone (By similarity). (98 aa)
PLA2G4DPhospholipase A2. (814 aa)
Your Current Organism:
Felis catus
NCBI taxonomy Id: 9685
Other names: F. catus, Felis domesticus, Felis silvestris catus, Korat cats, cat, cats, domestic cat
Server load: low (22%) [HD]