STRINGSTRING
FH FH IDH3B IDH3B DLD DLD IDH3G IDH3G BCKDK BCKDK DBT DBT DLST DLST BCKDHB BCKDHB MRPS36 MRPS36 SUCLG1 SUCLG1 OGDH OGDH KAT2A KAT2A BCKDHA BCKDHA IDH3A IDH3A SUCLG2 SUCLG2 OGDHL OGDHL SUCLA2 SUCLA2
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
FHFumarate hydratase, mitochondrial; Catalyzes the reversible stereospecific interconversion of fumarate to L-malate. Experiments in different species have demonstrated that specific isoforms of this protein act in defined pathways and favor one direction over the other (Probable). [Isoform Cytoplasmic]: Catalyzes the dehydration of L-malate to fumarate. Fumarate metabolism in the cytosol plays a role during urea cycle and arginine metabolism; fumarate being a by-product of the urea cycle and amino-acid catabolism (By similarity). Also plays a role in DNA repair by promoting non-homolog [...] (466 aa)
IDH3BIsocitrate dehydrogenase [NAD] subunit beta, mitochondrial; Plays a structural role to facilitate the assembly and ensure the full activity of the enzyme catalyzing the decarboxylation of isocitrate (ICT) into alpha-ketoglutarate. The heterodimer composed of the alpha (IDH3A) and beta (IDH3B) subunits and the heterodimer composed of the alpha (IDH3A) and gamma (IDH3G) subunits, have considerable basal activity but the full activity of the heterotetramer (containing two subunits of IDH3A, one of IDH3B and one of IDH3G) requires the assembly and cooperative function of both heterodimers. (602 aa)
DLDDihydrolipoyl dehydrogenase, mitochondrial; Lipoamide dehydrogenase is a component of the glycine cleavage system as well as an E3 component of three alpha-ketoacid dehydrogenase complexes (pyruvate-, alpha-ketoglutarate-, and branched- chain amino acid-dehydrogenase complex) (By similarity). The 2- oxoglutarate dehydrogenase complex is mainly active in the mitochondrion (By similarity). A fraction of the 2-oxoglutarate dehydrogenase complex also localizes in the nucleus and is required for lysine succinylation of histones: associates with KAT2A on chromatin and provides succinyl-CoA t [...] (511 aa)
IDH3GIsocitrate dehydrogenase [NAD] subunit gamma, mitochondrial; Regulatory subunit which plays a role in the allosteric regulation of the enzyme catalyzing the decarboxylation of isocitrate (ICT) into alpha-ketoglutarate. The heterodimer composed of the alpha (IDH3A) and beta (IDH3B) subunits and the heterodimer composed of the alpha (IDH3A) and gamma (IDH3G) subunits, have considerable basal activity but the full activity of the heterotetramer (containing two subunits of IDH3A, one of IDH3B and one of IDH3G) requires the assembly and cooperative function of both heterodimers. (388 aa)
BCKDKProtein-serine/threonine kinase. (453 aa)
DBTDihydrolipoamide acetyltransferase component of pyruvate dehydrogenase complex. (729 aa)
DLST2-oxoglutarate dehydrogenase E2 component (dihydrolipoamide succinyltransferase); Dihydrolipoamide succinyltransferase (E2) component of the 2- oxoglutarate dehydrogenase complex. The 2- oxoglutarate dehydrogenase complex catalyzes the overall conversion of 2-oxoglutarate to succinyl-CoA and CO(2). The 2- oxoglutarate dehydrogenase complex is mainly active in the mitochondrion (By similarity). A fraction of the 2-oxoglutarate dehydrogenase complex also localizes in the nucleus and is required for lysine succinylation of histones: associates with KAT2A on chromatin and provides succinyl [...] (446 aa)
BCKDHBBranched chain keto acid dehydrogenase E1 subunit beta. (396 aa)
MRPS36Mitochondrial ribosomal protein S36. (149 aa)
SUCLG1Succinate--CoA ligase [ADP/GDP-forming] subunit alpha, mitochondrial; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and specificity for either ATP or GTP is provided by different beta subunits. (393 aa)
OGDHOxoglutarate dehydrogenase. (1035 aa)
KAT2ALysine acetyltransferase 2A. (857 aa)
BCKDHA2-oxoisovalerate dehydrogenase subunit alpha; The branched-chain alpha-keto dehydrogenase complex catalyzes the overall conversion of alpha-keto acids to acyl-CoA and CO(2). It contains multiple copies of three enzymatic components: branched-chain alpha-keto acid decarboxylase (E1), lipoamide acyltransferase (E2) and lipoamide dehydrogenase (E3). (562 aa)
IDH3AIsocitrate dehydrogenase [NAD] subunit alpha, mitochondrial; Catalytic subunit of the enzyme which catalyzes the decarboxylation of isocitrate (ICT) into alpha-ketoglutarate. The heterodimer composed of the alpha (IDH3A) and beta (IDH3B) subunits and the heterodimer composed of the alpha (IDH3A) and gamma (IDH3G) subunits, have considerable basal activity but the full activity of the heterotetramer (containing two subunits of IDH3A, one of IDH3B and one of IDH3G) requires the assembly and cooperative function of both heterodimers. (345 aa)
SUCLG2Succinate--CoA ligase [GDP-forming] subunit beta, mitochondrial; GTP-specific succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. (457 aa)
OGDHLOxoglutarate dehydrogenase like. (978 aa)
SUCLA2Succinate--CoA ligase [ADP-forming] subunit beta, mitochondrial; ATP-specific succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of ATP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. (463 aa)
Your Current Organism:
Sus scrofa
NCBI taxonomy Id: 9823
Other names: S. scrofa, pig, pigs, swine, wild boar
Server load: low (20%) [HD]