STRINGSTRING
SIRT3 SIRT3 HIF1A HIF1A TSPO2 TSPO2 LOC100519295 LOC100519295 CYCS CYCS MCU MCU TSPO TSPO
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
SIRT3NAD-dependent protein deacetylase; NAD-dependent protein deacetylase. (351 aa)
HIF1AHypoxia-inducible factor 1-alpha isoform 1. (824 aa)
TSPO2Translocator protein 2. (171 aa)
LOC100519295Cytochrome c domain-containing protein; Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain. (104 aa)
CYCSCytochrome c; Electron carrier protein. The oxidized form of the cytochrome c heme group can accept an electron from the heme group of the cytochrome c1 subunit of cytochrome reductase. Cytochrome c then transfers this electron to the cytochrome oxidase complex, the final protein carrier in the mitochondrial electron-transport chain. (105 aa)
MCUCalcium uniporter protein, mitochondrial isoform 1. (351 aa)
TSPOTranslocator protein; Promotes the transport of cholesterol across mitochondrial membranes and may play a role in lipid metabolism, but its precise physiological role is controversial. It is apparently not required for steroid hormone biosynthesis. Can bind protoporphyrin IX and may play a role in the transport of porphyrins and heme. Was initially identified as peripheral-type benzodiazepine receptor; can also bind isoquinoline carboxamides (By similarity); Belongs to the TspO/BZRP family. (169 aa)
Your Current Organism:
Sus scrofa
NCBI taxonomy Id: 9823
Other names: S. scrofa, pig, pigs, swine, wild boar
Server load: low (28%) [HD]