STRINGSTRING
zupT zupT trkA trkA corA corA feoB feoB atpC atpC atpD atpD atpB atpB atpE atpE atpF atpF atpH atpH atpA atpA atpG atpG SGRA_2845 SGRA_2845 SGRA_2892 SGRA_2892 SGRA_4070 SGRA_4070 nqrA nqrA nqrB nqrB nqrC nqrC nqrD nqrD nqrE nqrE nqrF nqrF
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
zupTZinc transporter ZupT; Mediates zinc uptake. May also transport other divalent cations; Belongs to the ZIP transporter (TC 2.A.5) family. ZupT subfamily. (274 aa)
trkAPotassium transporter peripheral membrane component; COG0569 K+ transport systems, NAD-binding component. (447 aa)
corAMagnesium and cobalt transport protein CorA; Mediates influx of magnesium ions. Belongs to the CorA metal ion transporter (MIT) (TC 1.A.35) family. (325 aa)
feoBFerrous iron transport protein B; Probable transporter of a GTP-driven Fe(2+) uptake system. Belongs to the TRAFAC class TrmE-Era-EngA-EngB-Septin-like GTPase superfamily. FeoB GTPase (TC 9.A.8) family. (648 aa)
atpCH+-transporting two-sector ATPase, epsilon subunit; COG0355 F0F1-type ATP synthase, epsilon subunit (mitochondrial delta subunit). (79 aa)
atpDATP synthase F1, beta subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The catalytic sites are hosted primarily by the beta subunits; Belongs to the ATPase alpha/beta chains family. (502 aa)
atpBATP synthase F0, A subunit; Key component of the proton channel; it plays a direct role in the translocation of protons across the membrane. (421 aa)
atpEATP synthase F0, C subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation. (64 aa)
atpFATP synthase F0, B subunit; Component of the F(0) channel, it forms part of the peripheral stalk, linking F(1) to F(0); Belongs to the ATPase B chain family. (173 aa)
atpHATP synthase F1, delta subunit; F(1)F(0) ATP synthase produces ATP from ADP in the presence of a proton or sodium gradient. F-type ATPases consist of two structural domains, F(1) containing the extramembraneous catalytic core and F(0) containing the membrane proton channel, linked together by a central stalk and a peripheral stalk. During catalysis, ATP synthesis in the catalytic domain of F(1) is coupled via a rotary mechanism of the central stalk subunits to proton translocation; Belongs to the ATPase delta chain family. (186 aa)
atpAF0F1 ATP synthase subunit alpha; Produces ATP from ADP in the presence of a proton gradient across the membrane. The alpha chain is a regulatory subunit. Belongs to the ATPase alpha/beta chains family. (534 aa)
atpGATP synthase F1, gamma subunit; Produces ATP from ADP in the presence of a proton gradient across the membrane. The gamma chain is believed to be important in regulating ATPase activity and the flow of protons through the CF(0) complex. (301 aa)
SGRA_2845Sodium/proton antiporter, cpa1 family protein; COG0025 NhaP-type Na+/H+ and K+/H+ antiporters; Belongs to the monovalent cation:proton antiporter 2 (CPA2) transporter (TC 2.A.37) family. (635 aa)
SGRA_2892Potassium channel protein; COG1226 Kef-type K+ transport systems, predicted NAD-binding component. (367 aa)
SGRA_4070Cell volume regulation protein CvrA; COG3263 NhaP-type Na+/H+ and K+/H+ antiporters with a unique C-terminal domain. (483 aa)
nqrANa(+)-translocating NADH-quinone reductase subunit A; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol. (547 aa)
nqrBNa(+)-translocating NADH-quinone reductase subunit B; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol. (433 aa)
nqrCNa(+)-translocating NADH-quinone reductase subunit C; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol. (269 aa)
nqrDNa(+)-translocating NADH-quinone reductase subunit D; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol; Belongs to the NqrDE/RnfAE family. (221 aa)
nqrENa(+)-translocating NADH-quinone reductase subunit E; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. NqrA to NqrE are probably involved in the second step, the conversion of ubisemiquinone to ubiquinol; Belongs to the NqrDE/RnfAE family. (201 aa)
nqrFNa(+)-translocating NADH-quinone reductase subunit F; NQR complex catalyzes the reduction of ubiquinone-1 to ubiquinol by two successive reactions, coupled with the transport of Na(+) ions from the cytoplasm to the periplasm. The first step is catalyzed by NqrF, which accepts electrons from NADH and reduces ubiquinone-1 to ubisemiquinone by a one-electron transfer pathway. (442 aa)
Your Current Organism:
Saprospira grandis
NCBI taxonomy Id: 984262
Other names: S. grandis str. Lewin, Saprospira grandis str. Lewin, Saprospira grandis strain Lewin
Server load: low (28%) [HD]