STRINGSTRING
NDUFB8 NDUFB8 NDUFS2 NDUFS2 NDUFB5 NDUFB5 NDUFA10 NDUFA10 NDUFA8 NDUFA8 NDUFA9 NDUFA9 NDUFB6 NDUFB6 NDUFA1 NDUFA1 NDUFAB1 NDUFAB1 NDUFA3 NDUFA3 NDUFA13 NDUFA13 NDUFA5 NDUFA5 NDUFA6 NDUFA6 NDUFB10 NDUFB10 NDUFS8 NDUFS8 NDUFB7 NDUFB7 NDUFB3 NDUFB3 NDUFA12 NDUFA12 NDUFA2 NDUFA2 NDUFB1 NDUFB1 NDUFB4 NDUFB4 NDUFC2 NDUFC2 NDUFS3 NDUFS3 NDUFA11 NDUFA11 NDUFB9 NDUFB9 NDUFS1 NDUFS1 NDUFS4 NDUFS4 NDUFS6 NDUFS6 NDUFS7 NDUFS7 NDUFV2 NDUFV2 ND4 ND4 ND5 ND5 ND4L ND4L ND6 ND6 ND3 ND3 ND2 ND2 NDUFC1-2 NDUFC1-2 NDUFS5 NDUFS5 NDUFC1 NDUFC1 NDUFV3 NDUFV3 NDUFB11 NDUFB11 NDUFA7 NDUFA7 NDUFV1 NDUFV1
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
NDUFB8NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 8, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (186 aa)
NDUFS2NADH dehydrogenase [ubiquinone] iron-sulfur protein 2, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (463 aa)
NDUFB5NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 5, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (189 aa)
NDUFA10NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (343 aa)
NDUFA8NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 8; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (172 aa)
NDUFA9NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (380 aa)
NDUFB6NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 6; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (128 aa)
NDUFA1NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 1; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (70 aa)
NDUFAB1Acyl carrier protein, mitochondrial; Carrier of the growing fatty acid chain in fatty acid biosynthesis. Accessory and non-catalytic subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), which functions in the transfer of electrons from NADH to the respiratory chain ; Belongs to the acyl carrier protein (ACP) family. (156 aa)
NDUFA3NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 3; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (84 aa)
NDUFA13NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 13; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. Involved in the interferon/all-trans-retinoic acid (IFN/RA) induced cell death. This apoptotic activity is inhibited by interaction with viral IRF1. Prevents the transactivation of STAT3 target genes. May play a role in [...] (144 aa)
NDUFA5NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 5; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (116 aa)
NDUFA6NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 6; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Required for proper complex I assembly. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (154 aa)
NDUFB10NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 10; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (176 aa)
NDUFS8NADH dehydrogenase [ubiquinone] iron-sulfur protein 8, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (233 aa)
NDUFB7NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 7; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (137 aa)
NDUFB3NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 3; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (98 aa)
NDUFA12NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (220 aa)
NDUFA2NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (99 aa)
NDUFB1NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 1; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (58 aa)
NDUFB4NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 4; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (129 aa)
NDUFC2NADH dehydrogenase [ubiquinone] 1 subunit C2; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (120 aa)
NDUFS3NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (266 aa)
NDUFA11NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 11; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (141 aa)
NDUFB9NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 9; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed to be not involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (179 aa)
NDUFS1NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. This is the largest subunit of complex I and it is a component of the iron- sulfur (IP) fragment of the enzyme. It may form part of the active site crevice where NADH is oxidized. (727 aa)
NDUFS4NADH dehydrogenase [ubiquinone] iron-sulfur protein 4, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (175 aa)
NDUFS6NADH dehydrogenase [ubiquinone] iron-sulfur protein 6, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (152 aa)
NDUFS7NADH dehydrogenase [ubiquinone] iron-sulfur protein 7, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (216 aa)
NDUFV2NADH dehydrogenase [ubiquinone] flavoprotein 2, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (249 aa)
ND4NADH-ubiquinone oxidoreductase chain 4; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (459 aa)
ND5NADH-ubiquinone oxidoreductase chain 5; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (606 aa)
ND4LNADH-ubiquinone oxidoreductase chain 4L; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (98 aa)
ND6NADH-ubiquinone oxidoreductase chain 6; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (175 aa)
ND3NADH-ubiquinone oxidoreductase chain 3; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (115 aa)
ND2NADH-ubiquinone oxidoreductase chain 2; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (347 aa)
NDUFC1-2NADH dehydrogenase [ubiquinone] 1 subunit C1, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (79 aa)
NDUFS5NADH dehydrogenase [ubiquinone] iron-sulfur protein 5; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (106 aa)
NDUFC1NADH dehydrogenase [ubiquinone] 1 subunit C1, mitochondrial. (144 aa)
NDUFV3NADH dehydrogenase [ubiquinone] flavoprotein 3, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. May be the terminally assembled subunit of Complex I. (512 aa)
NDUFB11NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 11, mitochondrial; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (154 aa)
NDUFA7NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 7; Accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I), that is believed not to be involved in catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (113 aa)
NDUFV1NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial; Core subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (Complex I) that is believed to belong to the minimal assembly required for catalysis. Complex I functions in the transfer of electrons from NADH to the respiratory chain. The immediate electron acceptor for the enzyme is believed to be ubiquinone. (561 aa)
Your Current Organism:
Bos taurus
NCBI taxonomy Id: 9913
Other names: B. taurus, Bos bovis, Bos primigenius taurus, Bovidae sp. Adi Nefas, bovine, cattle, cow, dairy cow, domestic cattle, domestic cow
Server load: low (14%) [HD]