STRINGSTRING
talB talB oadB1 oadB1 oadA1 oadA1 oadG1 oadG1 leuD leuD leuC leuC leuB leuB leuA leuA ilvI ilvI ilvH ilvH pdhR pdhR aceE aceE aceF aceF lpdA lpdA acnB acnB gcd gcd leuC2 leuC2 leuD2 leuD2 cyoE cyoE cyoD cyoD cyoC cyoC cyoB cyoB cyoA cyoA aes aes STM0564 STM0564 STM0566 STM0566 lipA lipA lipB lipB pgm pgm gltA gltA STM0731 STM0731 sdhC sdhC sdhD sdhD sdhA sdhA sdhB sdhB sucA sucA sucB sucB sucC sucC sucD sucD STM0761 STM0761 STM0762 STM0762 dcoC dcoC dcoB dcoB gpmA gpmA galM galM galK galK galT galT galE galE STM0777 STM0777 ybhE ybhE pflF pflF pflE pflE poxB poxB pflA pflA pflB pflB focA focA aspC aspC agp agp icdA icdA gapA gapA pfkB pfkB pps pps ydiJ ydiJ pykF pykF orf70 orf70 fumA fumA fumC fumC STM1558 STM1558 STM1559 STM1559 STM1560 STM1560 sfcA sfcA STM1620 STM1620 ldhA ldhA nifJ nifJ acnA acnA galU galU prsA prsA treA treA eda eda edd edd zwf zwf yebK yebK pykA pykA otsA otsA otsB otsB amyA amyA gnd gnd fbaB fbaB dld dld nuoN nuoN nuoM nuoM nuoL nuoL nuoK nuoK nuoJ nuoJ nuoI nuoI nuoH nuoH nuoG nuoG nuoF nuoF nuoE nuoE nuoC nuoC nuoB nuoB nuoA nuoA yfbQ yfbQ STM2340 STM2340 STM2341 STM2341 glk glk maeB maeB talA talA tktB tktB yfhL yfhL yfiD yfiD eno eno rpiA rpiA fba fba pgk pgk tktA tktA tdcE tdcE yraR yraR oadB oadB oadA oadA oadG oadG STM3354 STM3354 STM3355 STM3355 mdh mdh pckA pckA malQ malQ malP malP STM3531 STM3531 glgP glgP glgA glgA glgC glgC glgX glgX glgB glgB STM3580 STM3580 treF treF yhjJ yhjJ malS malS lldP lldP lldR lldR lldD lldD pmgI pmgI rbsK-3 rbsK-3 ilvN ilvN ilvB ilvB ilvG ilvG ilvM ilvM ilvE ilvE ilvD ilvD ilvA ilvA ilvC ilvC pfkA pfkA lsrE lsrE tpiA tpiA glpX glpX talC talC pflD pflD pflC pflC ppc ppc pgi pgi fumB fumB frdD frdD frdC frdC frdB frdB frdA frdA fbp fbp treC treC yjjW yjjW yjjI yjjI deoC deoC deoA deoA deoB deoB lplA lplA gpmB gpmB
Nodes:
Network nodes represent proteins
splice isoforms or post-translational modifications are collapsed, i.e. each node represents all the proteins produced by a single, protein-coding gene locus.
Node Color
colored nodes:
query proteins and first shell of interactors
white nodes:
second shell of interactors
Node Content
empty nodes:
proteins of unknown 3D structure
filled nodes:
a 3D structure is known or predicted
Edges:
Edges represent protein-protein associations
associations are meant to be specific and meaningful, i.e. proteins jointly contribute to a shared function; this does not necessarily mean they are physically binding to each other.
Known Interactions
from curated databases
experimentally determined
Predicted Interactions
gene neighborhood
gene fusions
gene co-occurrence
Others
textmining
co-expression
protein homology
Your Input:
talBTransaldolase B; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. (317 aa)
oadB1Putative oxalacetate decarboxylase, subunit beta; Catalyzes the decarboxylation of oxaloacetate coupled to Na(+) translocation. (433 aa)
oadA1Putative oxalacetate decarboxylase, subunit alpha; Catalyzes the decarboxylation of oxaloacetate coupled to Na(+) translocation. (591 aa)
oadG1Putative oxalacetate decarboxylase, subunit gamma; Catalyzes the decarboxylation of oxaloacetate coupled to Na(+) translocation. (79 aa)
leuD3-isopropylmalate isomerase (dehydratase), subunit with LeuC; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. Belongs to the LeuD family. LeuD type 1 subfamily. (201 aa)
leuC3-isopropylmalate isomerase (dehydratase), subunit with LeuD; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. (466 aa)
leuB3-isopropylmalate dehydrogenase; Catalyzes the oxidation of 3-carboxy-2-hydroxy-4- methylpentanoate (3-isopropylmalate) to 3-carboxy-4-methyl-2- oxopentanoate. The product decarboxylates to 4-methyl-2 oxopentanoate. Belongs to the isocitrate and isopropylmalate dehydrogenases family. LeuB type 1 subfamily. (363 aa)
leuA2-isopropylmalate synthase; Catalyzes the condensation of the acetyl group of acetyl-CoA with 3-methyl-2-oxobutanoate (2-oxoisovalerate) to form 3-carboxy-3- hydroxy-4-methylpentanoate (2-isopropylmalate); Belongs to the alpha-IPM synthase/homocitrate synthase family. LeuA type 1 subfamily. (523 aa)
ilvIAcetolactate synthase isozyme III large subunit. (SW:ILVI_SALTY). (553 aa)
ilvHAcetolactate synthase isozyme III small subunit. (SW:ILVH_SALTY). (163 aa)
pdhRTranscriptional repressor for pyruvate dehydrogenase complex (GntR family); Transcriptional repressor for the pyruvate dehydrogenase complex genes aceEF and lpd. (254 aa)
aceEPyruvate dehydrogenase, decarboxylase component; Component of the pyruvate dehydrogenase (PDH) complex, that catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (887 aa)
aceFPyruvate dehydrogenase; The pyruvate dehydrogenase complex catalyzes the overall conversion of pyruvate to acetyl-CoA and CO(2). (629 aa)
lpdALipoamide dehydrogenase (NADH); Component of 2-oxodehydrogenase and pyruvate complexes; L protein of glycine cleavage complex second part; similar to E. coli lipoamide dehydrogenase (NADH); component of 2-oxodehydrogenase and pyruvate complexes; L-protein of glycine cleavage complex (AAC73227.1); Blastp hit to AAC73227.1 (474 aa), 98% identity in aa 1 - 474. (474 aa)
acnBAconitate hydratase 2; Involved in the catabolism of short chain fatty acids (SCFA) via the tricarboxylic acid (TCA)(acetyl degradation route) and the 2- methylcitrate cycle I (propionate degradation route). Catalyzes the reversible isomerization of citrate to isocitrate via cis-aconitate. Also catalyzes the hydration of 2-methyl-cis-aconitate to yield (2R,3S)-2-methylisocitrate. The apo form of AcnB functions as a RNA- binding regulatory protein which regulates FliC synthesis via interaction with the ftsH transcript to decrease the intracellular levels of FtsH. The lower levels of Fts [...] (865 aa)
gcdSimilar to E. coli glucose dehydrogenase (AAC73235.1); Blastp hit to AAC73235.1 (796 aa), 92% identity in aa 1 - 796. (796 aa)
leuC2Putative 3-isopropylmalate isomerase; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. (473 aa)
leuD2Putative 3-isopropylmalate isomerase (dehydratase), subunit with LeuC; Catalyzes the isomerization between 2-isopropylmalate and 3- isopropylmalate, via the formation of 2-isopropylmaleate. Belongs to the LeuD family. LeuD type 1 subfamily. (208 aa)
cyoEProtohaeme IX farnesyltransferase (haeme O biosynthesis); Converts heme B (protoheme IX) to heme O by substitution of the vinyl group on carbon 2 of heme B porphyrin ring with a hydroxyethyl farnesyl side group. (296 aa)
cyoDSimilar to E. coli cytochrome o ubiquinol oxidase subunit IV (AAC73532.1); Blastp hit to AAC73532.1 (109 aa), 93% identity in aa 1 - 109. (109 aa)
cyoCSimilar to E. coli cytochrome o ubiquinol oxidase subunit III (AAC73533.1); Blastp hit to AAC73533.1 (204 aa), 96% identity in aa 1 - 204. (204 aa)
cyoBSimilar to E. coli cytochrome o ubiquinol oxidase subunit I (AAC73534.1); Blastp hit to AAC73534.1 (663 aa), 95% identity in aa 1 - 663; Belongs to the heme-copper respiratory oxidase family. (663 aa)
cyoASimilar to E. coli cytochrome o ubiquinol oxidase subunit II (AAC73535.1); Blastp hit to AAC73535.1 (315 aa), 95% identity in aa 1 - 315. (318 aa)
aesAcetyl esterase; Displays esterase activity towards short chain fatty esters (acyl chain length of up to 8 carbons). Able to hydrolyze triacetylglycerol (triacetin) and tributyrylglycerol (tributyrin), but not trioleylglycerol (triolein) or cholesterol oleate. Negatively regulates MalT activity by antagonizing maltotriose binding. Inhibits MelA galactosidase activity. (323 aa)
STM0564Similar to E. coli putative oxidoreductase (AAC73407.1); Blastp hit to AAC73407.1 (450 aa), 74% identity in aa 10 - 450. (441 aa)
STM0566Putative inner membrane protein; Similar to E. coli orf, hypothetical protein (AAC73404.1); Blastp hit to AAC73404.1 (200 aa), 84% identity in aa 4 - 188. (186 aa)
lipALipoate synthase, an iron-sulfur enzyme; Catalyzes the radical-mediated insertion of two sulfur atoms into the C-6 and C-8 positions of the octanoyl moiety bound to the lipoyl domains of lipoate-dependent enzymes, thereby converting the octanoylated domains into lipoylated derivatives. (321 aa)
lipBPutative ligase in lipoate biosynthesis; Catalyzes the transfer of endogenously produced octanoic acid from octanoyl-acyl-carrier-protein onto the lipoyl domains of lipoate- dependent enzymes. Lipoyl-ACP can also act as a substrate although octanoyl-ACP is likely to be the physiological substrate. (191 aa)
pgmPhosphoglucomutase; Similar to E. coli phosphoglucomutase (AAC73782.1); Blastp hit to AAC73782.1 (546 aa), 97% identity in aa 1 - 546. (546 aa)
gltACitrate synthase. (SW:CISY_SALTY). (427 aa)
STM0731Putative inner membrane protein. (128 aa)
sdhCSuccinate dehydrogenase, cytochrome b556; Membrane-anchoring subunit of succinate dehydrogenase (SDH). (129 aa)
sdhDSuccinate dehydrogenase, hydrophobic subunit; Membrane-anchoring subunit of succinate dehydrogenase (SDH). (115 aa)
sdhASuccinate dehydrogenase, flavoprotein subunit; Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. Belongs to the FAD-dependent oxidoreductase 2 family. FRD/SDH subfamily. (588 aa)
sdhBSuccinate dehydrogenase, Fe-S protein; Two distinct, membrane-bound, FAD-containing enzymes are responsible for the catalysis of fumarate and succinate interconversion; the fumarate reductase is used in anaerobic growth, and the succinate dehydrogenase is used in aerobic growth. (239 aa)
sucASimilar to E. coli 2-oxoglutarate dehydrogenase (decarboxylase component) (AAC73820.1); Blastp hit to AAC73820.1 (933 aa), 94% identity in aa 1 - 933. (933 aa)
sucB2-oxoglutarate dehydrogenase (dihydrolipoyltranssuccinase E2 component); E2 component of the 2-oxoglutarate dehydrogenase (OGDH) complex which catalyzes the second step in the conversion of 2- oxoglutarate to succinyl-CoA and CO(2). (402 aa)
sucCsuccinyl-CoA synthetase, beta subunit; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The beta subunit provides nucleotide specificity of the enzyme and binds the substrate succinate, while the binding sites for coenzyme A and phosphate are found in the alpha subunit. (388 aa)
sucDsuccinyl-CoA synthetase, alpha subunit; Succinyl-CoA synthetase functions in the citric acid cycle (TCA), coupling the hydrolysis of succinyl-CoA to the synthesis of either ATP or GTP and thus represents the only step of substrate-level phosphorylation in the TCA. The alpha subunit of the enzyme binds the substrates coenzyme A and phosphate, while succinate binding and nucleotide specificity is provided by the beta subunit. (289 aa)
STM0761Similar to E. coli fumarase B= fumarate hydratase Class I; anaerobic isozyme (AAC77083.1); Blastp hit to AAC77083.1 (548 aa), 36% identity in aa 361 - 541. (181 aa)
STM0762Similar to E. coli L-tartrate dehydratase, subunit A (AAC76097.1); Blastp hit to AAC76097.1 (303 aa), 29% identity in aa 29 - 287. (281 aa)
dcoCOxalacetate decarboxylase: gamma chain; Catalyzes the decarboxylation of oxaloacetate coupled to Na(+) translocation. (81 aa)
dcoBOxalacetate decarboxylase: beta chain; Catalyzes the decarboxylation of oxaloacetate coupled to Na(+) translocation; Belongs to the GcdB/MmdB/OadB family. (433 aa)
gpmAPhosphoglyceromutase 1; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate; Belongs to the phosphoglycerate mutase family. BPG- dependent PGAM subfamily. (250 aa)
galMGalactose-1-epimerase (mutarotase); Converts alpha-aldose to the beta-anomer. (346 aa)
galKGalactokinase; Catalyzes the transfer of the gamma-phosphate of ATP to D- galactose to form alpha-D-galactose-1-phosphate (Gal-1-P). Belongs to the GHMP kinase family. GalK subfamily. (382 aa)
galTGalactose-1-phosphate uridylyltransferase. (SW:GAL7_SALTY). (348 aa)
galEUDP-galactose 4-epimerase; Involved in the metabolism of galactose. Catalyzes the conversion of UDP-galactose (UDP-Gal) to UDP-glucose (UDP-Glc) through a mechanism involving the transient reduction of NAD (By similarity). (338 aa)
STM0777Putative inner membrane protein. (302 aa)
ybhEPutative 3-carboxymuconate cyclase; Catalyzes the hydrolysis of 6-phosphogluconolactone to 6- phosphogluconate. (331 aa)
pflFSimilar to E. coli putative formate acetyltransferase (AAC73910.1); Blastp hit to AAC73910.1 (810 aa), 95% identity in aa 1 - 810. (810 aa)
pflESimilar to E. coli putative pyruvate formate-lyase 2 activating enzyme (AAC73911.1); Blastp hit to AAC73911.1 (308 aa), 87% identity in aa 10 - 308. (299 aa)
poxBPyruvate dehydrogenase/oxidase FAD and thiamine PPi cofactors, cytoplasmic in absence of cofactors; Similar to E. coli pyruvate oxidase (AAC73958.1); Blastp hit to AAC73958.1 (572 aa), 94% identity in aa 1 - 572; Belongs to the TPP enzyme family. (572 aa)
pflAPyruvate formate lyase activating enzyme 1; Activation of pyruvate formate-lyase under anaerobic conditions by generation of an organic free radical, using S- adenosylmethionine and reduced flavodoxin as cosubstrates to produce 5'-deoxy-adenosine; Belongs to the organic radical-activating enzymes family. (274 aa)
pflBPyruvate formate lyase I, induced anaerobically; Similar to E. coli formate acetyltransferase 1 (AAC73989.1); Blastp hit to AAC73989.1 (760 aa), 96% identity in aa 1 - 760. (760 aa)
focAFormate channel 1; putative FNT family member; similar to E. coli probable formate transporter (formate channel 1) (AAC73990.1); Blastp hit to AAC73990.1 (285 aa), 95% identity in aa 1 - 285. (285 aa)
aspCSimilar to E. coli aspartate aminotransferase (AAC74014.1); Blastp hit to AAC74014.1 (396 aa), 95% identity in aa 1 - 396; Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family. (396 aa)
agpGlucose-1-phosphatase precursor. (SW:AGP_SALTY). (413 aa)
icdAIsocitrate dehydrogenase in e14 prophage; Specific for NADP+; similar to E. coli isocitrate dehydrogenase, specific for NADP+ (AAC74220.1); Blastp hit to AAC74220.1 (416 aa), 96% identity in aa 1 - 416. (416 aa)
gapAGlyceraldehyde-3-phosphate dehydrogenase A; Catalyzes the oxidative phosphorylation of glyceraldehyde 3- phosphate (G3P) to 1,3-bisphosphoglycerate (BPG) using the cofactor NAD. The first reaction step involves the formation of a hemiacetal intermediate between G3P and a cysteine residue, and this hemiacetal intermediate is then oxidized to a thioester, with concomitant reduction of NAD to NADH. The reduced NADH is then exchanged with the second NAD, and the thioester is attacked by a nucleophilic inorganic phosphate to produce BPG. (331 aa)
pfkBSimilar to E. coli 6-phosphofructokinase II; suppressor of pfkA (AAC74793.1); Blastp hit to AAC74793.1 (309 aa), 92% identity in aa 1 - 308; Belongs to the carbohydrate kinase PfkB family. (310 aa)
ppsPhosphoenolpyruvate synthase; Catalyzes the phosphorylation of pyruvate to phosphoenolpyruvate; Belongs to the PEP-utilizing enzyme family. (792 aa)
ydiJSimilar to E. coli putative oxidase (AAC74757.1); Blastp hit to AAC74757.1 (1018 aa), 88% identity in aa 1 - 1017. (1018 aa)
pykFPyruvate kinase I; Formerly F; fructose stimulated; pyruvate kinase I. (SW:KPY1_SALTY). (470 aa)
orf70Putative cytoplasmic protein; In vitro catalyzes the addition of water to fumarate, forming malate. Cannot catalyze the reverse reaction. Cannot use the cis-isomer maleate as substrate; Belongs to the FumD family. (70 aa)
fumAFumarase A; Catalyzes the reversible hydration of fumarate to (S)-malate. Functions as an aerobic enzyme in the direction of malate formation as part of the citric acid cycle. Accounts for about 80% of the fumarase activity when the bacteria grow aerobically. To a lesser extent, also displays D-tartrate dehydratase activity in vitro, but is not able to convert (R)-malate, L-tartrate or meso-tartrate. Can also catalyze the isomerization of enol- to keto-oxaloacetate. (548 aa)
fumCFumarase C; Involved in the TCA cycle. Catalyzes the stereospecific interconversion of fumarate to L-malate; Belongs to the class-II fumarase/aspartase family. Fumarase subfamily. (467 aa)
STM1558Putative glycosyl hydrolase; Similar to E. coli part of glycogen operon, a glycosyl hydrolase, debranching enzyme (AAC76456.1); Blastp hit to AAC76456.1 (657 aa), 48% identity in aa 3 - 595; Belongs to the glycosyl hydrolase 13 family. (691 aa)
STM1559Putative glycosyl hydrolase; Similar to E. coli trehalase 6-P hydrolase (AAC77196.1); Blastp hit to AAC77196.1 (551 aa), 36% identity in aa 41 - 129, 25% identity in aa 149 - 210, 37% identity in aa 356 - 379. (842 aa)
STM1560Putative alpha amylase; Similar to E. coli 1,4-alpha-glucan branching enzyme (AAC76457.1); Blastp hit to AAC76457.1 (728 aa), 30% identity in aa 235 - 407, 28% identity in aa 524 - 576. (594 aa)
sfcASimilar to E. coli NAD-linked malate dehydrogenase (malic enzyme) (AAC74552.1); Blastp hit to AAC74552.1 (574 aa), 92% identity in aa 10 - 574; Belongs to the malic enzymes family. (565 aa)
STM1620Putative oxidase; Similar to E. coli L-lactate dehydrogenase (AAC76629.1); Blastp hit to AAC76629.1 (396 aa), 38% identity in aa 212 - 384, 33% identity in aa 22 - 175. (400 aa)
ldhASimilar to E. coli fermentative D-lactate dehydrogenase, NAD-dependent (AAC74462.1); Blastp hit to AAC74462.1 (329 aa), 94% identity in aa 1 - 328; Belongs to the D-isomer specific 2-hydroxyacid dehydrogenase family. (329 aa)
nifJSimilar to E. coli putative oxidoreductase, Fe-S subunit (AAC74460.1); Blastp hit to AAC74460.1 (1174 aa), 92% identity in aa 1 - 1174. (1174 aa)
acnAAconitate hydratase 1; Involved in the catabolism of short chain fatty acids (SCFA) via the tricarboxylic acid (TCA)(acetyl degradation route) and the 2- methylcitrate cycle I (propionate degradation route). Catalyzes the reversible isomerization of citrate to isocitrate via cis-aconitate. Also catalyzes the hydration of 2-methyl-cis-aconitate to yield (2R,3S)-2-methylisocitrate. The (2S,3S)-2-methylcitrate (2-MC) is a very poor substrate. The apo form of AcnA functions as a RNA-binding regulatory protein (By similarity). Belongs to the aconitase/IPM isomerase family. (891 aa)
galUSimilar to E. coli glucose-1-phosphate uridylyltransferase (AAC74318.1); Blastp hit to AAC74318.1 (302 aa), 97% identity in aa 1 - 302. (302 aa)
prsAPhosphoribosylpyrophosphate synthetase; Involved in the biosynthesis of the central metabolite phospho-alpha-D-ribosyl-1-pyrophosphate (PRPP) via the transfer of pyrophosphoryl group from ATP to 1-hydroxyl of ribose-5-phosphate (Rib- 5-P). (315 aa)
treATrehalase, periplasmic; Provides the cells with the ability to utilize trehalose at high osmolarity by splitting it into glucose molecules that can subsequently be taken up by the phosphotransferase-mediated uptake system; Belongs to the glycosyl hydrolase 37 family. (570 aa)
edaMultifunctional; similar to E. coli 2-keto-3-deoxygluconate 6-phosphate aldolase and 2-keto-4-hydroxyglutarate aldolase (AAC74920.1); Blastp hit to AAC74920.1 (213 aa), 97% identity in aa 1 - 212; oxaloacetate decarboxylase. (213 aa)
edd6-phosphogluconate dehydratase; Catalyzes the dehydration of 6-phospho-D-gluconate to 2- dehydro-3-deoxy-6-phospho-D-gluconate; Belongs to the IlvD/Edd family. (603 aa)
zwfGlucose-6-phosphate dehydrogenase; Catalyzes the oxidation of glucose 6-phosphate to 6- phosphogluconolactone. (491 aa)
yebKPutative transcriptional regulator; Similar to E. coli orf, hypothetical protein (AAC74923.1); Blastp hit to AAC74923.1 (289 aa), 92% identity in aa 1 - 289. (289 aa)
pykAPyruvate kinase II; Glucose stimulated; similar to E. coli pyruvate kinase II, glucose stimulated (AAC74924.1); Blastp hit to AAC74924.1 (480 aa), 98% identity in aa 1 - 480. (480 aa)
otsATrehalose-6-phosphate synthase; Probably involved in the osmoprotection via the biosynthesis of trehalose. Catalyzes the transfer of glucose from UDP-alpha-D- glucose (UDP-Glc) to D-glucose 6-phosphate (Glc-6-P) to form trehalose- 6-phosphate. Acts with retention of the anomeric configuration of the UDP-sugar donor; Belongs to the glycosyltransferase 20 family. (473 aa)
otsBTrehalose-6-phosphate phophatase, biosynthetic; Removes the phosphate from trehalose 6-phosphate to produce free trehalose. (267 aa)
amyACytoplasmic alpha-amylase. (SW:AMY2_SALTY); Belongs to the glycosyl hydrolase 13 family. (494 aa)
gndGluconate-6-phosphate dehydrogenase; Catalyzes the oxidative decarboxylation of 6-phosphogluconate to ribulose 5-phosphate and CO(2), with concomitant reduction of NADP to NADPH. (468 aa)
fbaB3-oxoacyl-[acyl-carrier-protein] synthase I; Similar to E. coli orf, hypothetical protein (AAC75158.1); Blastp hit to AAC75158.1 (374 aa), 96% identity in aa 25 - 374. (350 aa)
dldNADH independent D-lactate dehydrogenase; Catalyzes the oxidation of D-lactate to pyruvate. Belongs to the quinone-dependent D-lactate dehydrogenase family. (576 aa)
nuoNNADH dehydrogenase I chain N; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 2 family. (425 aa)
nuoMSimilar to E. coli NADH dehydrogenase I chain M (AAC75337.1); Blastp hit to AAC75337.1 (509 aa), 96% identity in aa 1 - 509. (509 aa)
nuoLSimilar to E. coli NADH dehydrogenase I chain L (AAC75338.1); Blastp hit to AAC75338.1 (613 aa), 94% identity in aa 1 - 613. (613 aa)
nuoKNADH dehydrogenase I chain K; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 4L family. (100 aa)
nuoJNADH dehydrogenase I chain J; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (184 aa)
nuoINADH dehydrogenase I chain I; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (180 aa)
nuoHNADH dehydrogenase I chain H; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. This subunit may bind ubiquinone. (325 aa)
nuoGNADH dehydrogenase I chain G; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity). (910 aa)
nuoFNADH dehydrogenase I chain F; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity). (445 aa)
nuoENADH dehydrogenase I chain E; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient (By similarity); Belongs to the complex I 24 kDa subunit family. (166 aa)
nuoCNADH dehydrogenase I chain C,D; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; In the N-terminal section; belongs to the complex I 30 kDa subunit family. (600 aa)
nuoBNADH dehydrogenase I chain B; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient. (220 aa)
nuoANADH dehydrogenase I chain A; NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be ubiquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient; Belongs to the complex I subunit 3 family. (147 aa)
yfbQPutative regulator; similar to E. coli putative aminotransferase (AAC75350.1); Blastp hit to AAC75350.1 (405 aa), 96% identity in aa 1 - 404. (404 aa)
STM2340Putative transketolase; Similar to E. coli 1-deoxyxylulose-5-phosphate synthase; flavoprotein (AAC73523.1); Blastp hit to AAC73523.1 (620 aa), 26% identity in aa 323 - 619. (317 aa)
STM2341Similar to E. coli transketolase 1 isozyme (AAC75972.1); Blastp hit to AAC75972.1 (663 aa), 33% identity in aa 6 - 267. (276 aa)
glkGlucokinase; Similar to E. coli glucokinase (AAC75447.1); Blastp hit to AAC75447.1 (321 aa), 93% identity in aa 1 - 321; Belongs to the bacterial glucokinase family. (321 aa)
maeBPutative transferase; NADP-dependent malic enzyme. (SW:MAO2_SALTY); In the C-terminal section; belongs to the phosphate acetyltransferase and butyryltransferase family. (759 aa)
talATransaldolase A; Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. (316 aa)
tktBTransketolase 2 isozyme; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. (666 aa)
yfhLPutative ferredoxin; Similar to E. coli orf, hypothetical protein (AAC75615.1); Blastp hit to AAC75615.1 (86 aa), 94% identity in aa 1 - 86. (86 aa)
yfiDPutative formate acetyltransferase; Acts as a radical domain for damaged PFL and possibly other radical proteins. (127 aa)
enoEnolase; Catalyzes the reversible conversion of 2-phosphoglycerate into phosphoenolpyruvate. It is essential for the degradation of carbohydrates via glycolysis. (432 aa)
rpiAConstitutive ribosephosphate isomerase; Catalyzes the reversible conversion of ribose-5-phosphate to ribulose 5-phosphate. (219 aa)
fbaFructose-bisphosphate aldolase; Catalyzes the aldol condensation of dihydroxyacetone phosphate (DHAP or glycerone-phosphate) with glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP) in gluconeogenesis and the reverse reaction in glycolysis; Belongs to the class II fructose-bisphosphate aldolase family. (359 aa)
pgkSimilar to E. coli phosphoglycerate kinase (AAC75963.1); Blastp hit to AAC75963.1 (387 aa), 97% identity in aa 1 - 387. (387 aa)
tktATransketolase 1 isozyme; Catalyzes the transfer of a two-carbon ketol group from a ketose donor to an aldose acceptor, via a covalent intermediate with the cofactor thiamine pyrophosphate. (663 aa)
tdcEPyruvate formate-lyase 4; Similar to E. coli probable formate acetyltransferase 3 (AAC76149.1); Blastp hit to AAC76149.1 (746 aa), 93% identity in aa 1 - 741; 2-ketobutyrate formate-lyase. (764 aa)
yraRPutative nucleoside-diphosphate-sugar epimerase; Similar to E. coli orf, hypothetical protein (AAC76186.1); Blastp hit to AAC76186.1 (226 aa), 86% identity in aa 6 - 226. (222 aa)
oadBOxaloacetate decarboxylase beta chain; Catalyzes the decarboxylation of oxaloacetate coupled to Na(+) translocation. (433 aa)
oadAPutative sodium ion pump; oxaloacetate decarboxylase alpha chain. (SW:DCOA_SALTY). (591 aa)
oadGOxaloacetate decarboxylase gamma chain; Catalyzes the decarboxylation of oxaloacetate coupled to Na(+) translocation. (84 aa)
STM3354Similar to E. coli L-tartrate dehydratase, subunit B (AAC76098.1); Blastp hit to AAC76098.1 (201 aa), 69% identity in aa 2 - 201. (205 aa)
STM3355Similar to E. coli L-tartrate dehydratase, subunit A (AAC76097.1); Blastp hit to AAC76097.1 (303 aa), 54% identity in aa 6 - 299. (299 aa)
mdhMalate dehydrogenase; Catalyzes the reversible oxidation of malate to oxaloacetate. (312 aa)
pckAPhosphoenolpyruvate carboxykinase; Involved in the gluconeogenesis. Catalyzes the conversion of oxaloacetate (OAA) to phosphoenolpyruvate (PEP) through direct phosphoryl transfer between the nucleoside triphosphate and OAA. (539 aa)
malQSimilar to E. coli 4-alpha-glucanotransferase (amylomaltase) (AAC76441.1); Blastp hit to AAC76441.1 (694 aa), 85% identity in aa 1 - 694. (692 aa)
malPMaltodextrin phosphorylase; Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties. (797 aa)
STM3531Similar to E. coli putative dehydratase (AAC73372.1); Blastp hit to AAC73372.1 (655 aa), 39% identity in aa 86 - 578; Belongs to the IlvD/Edd family. (571 aa)
glgPGlycogen phosphorylase; Phosphorylase is an important allosteric enzyme in carbohydrate metabolism. Enzymes from different sources differ in their regulatory mechanisms and in their natural substrates. However, all known phosphorylases share catalytic and structural properties. (815 aa)
glgAGlycogen synthase; Synthesizes alpha-1,4-glucan chains using ADP-glucose. (477 aa)
glgCGlucose-1-phosphate adenylyltransferase; Involved in the biosynthesis of ADP-glucose, a building block required for the elongation reactions to produce glycogen. Catalyzes the reaction between ATP and alpha-D-glucose 1-phosphate (G1P) to produce pyrophosphate and ADP-Glc. (431 aa)
glgXGlycosyl hydrolase; Removes maltotriose and maltotetraose chains that are attached by 1,6-alpha-linkage to the limit dextrin main chain, generating a debranched limit dextrin. (658 aa)
glgB1,4-alpha-glucan branching enzyme; Catalyzes the formation of the alpha-1,6-glucosidic linkages in glycogen by scission of a 1,4-alpha-linked oligosaccharide from growing alpha-1,4-glucan chains and the subsequent attachment of the oligosaccharide to the alpha-1,6 position; Belongs to the glycosyl hydrolase 13 family. GlgB subfamily. (728 aa)
STM3580Putative inner membrane lipoprotein; Similar to E. coli orf, hypothetical protein (AAC76497.1); Blastp hit to AAC76497.1 (203 aa), 80% identity in aa 19 - 203. (185 aa)
treFCytoplasmic trehalase; Hydrolyzes trehalose to glucose. Could be involved, in cells returning to low osmolarity conditions, in the utilization of the accumulated cytoplasmic trehalose, which was synthesized in response to high osmolarity. (549 aa)
yhjJPutative Zn-dependent peptidase; Protein YHJJ precursor. (SW:YHJJ_SALTY); Belongs to the peptidase M16 family. (495 aa)
malSAlpha-amylase; Similar to E. coli alpha-amylase (AAC76595.1); Blastp hit to AAC76595.1 (676 aa), 81% identity in aa 1 - 676. (675 aa)
lldPLctP transporter; Transports L-lactate across the membrane. Can also transport D-lactate and glycolate. Seems to be driven by a proton motive force (By similarity). (551 aa)
lldRPutative transcriptional GntR family regulator for lct operon; Similar to E. coli transcriptional regulator (AAC76628.1); Blastp hit to AAC76628.1 (258 aa), 86% identity in aa 1 - 258. (258 aa)
lldDL-lactate dehydrogenase; Catalyzes the conversion of L-lactate to pyruvate. Is coupled to the respiratory chain; Belongs to the FMN-dependent alpha-hydroxy acid dehydrogenase family. (396 aa)
pmgIPhosphoglyceromutase; Catalyzes the interconversion of 2-phosphoglycerate and 3- phosphoglycerate. (514 aa)
rbsK-3Putative sugar kinase; Catalyzes the phosphorylation of ribose at O-5 in a reaction requiring ATP and magnesium. The resulting D-ribose-5-phosphate can then be used either for sythesis of nucleotides, histidine, and tryptophan, or as a component of the pentose phosphate pathway. (306 aa)
ilvNSimilar to E. coli acetolactate synthase I, valine sensitive, small subunit (AAC76693.1); Blastp hit to AAC76693.1 (96 aa), 90% identity in aa 1 - 96. (96 aa)
ilvBValine sensitive; similar to E. coli acetolactate synthase I,valine-sensitive, large subunit (AAC76694.1); Blastp hit to AAC76694.1 (562 aa), 91% identity in aa 1 - 562. (562 aa)
ilvGFragment 1; cryptic; similar to E. coli acetolactate synthase II, large subunit, cryptic, interrupted (AAC77488.1); Blastp hit to AAC77488.1 (327 aa), 93% identity in aa 1 - 325. (548 aa)
ilvMSimilar to E. coli acetolactate synthase II, valine insensitive, small subunit (AAC77489.1); Blastp hit to AAC77489.1 (87 aa), 93% identity in aa 2 - 87. (86 aa)
ilvEBranched-chain amino-acid aminotransferase; Acts on leucine, isoleucine and valine. (309 aa)
ilvDDihydroxy-acid dehydratase. (SW:ILVD_SALTY); Belongs to the IlvD/Edd family. (616 aa)
ilvAThreonine deaminase; Catalyzes the anaerobic formation of alpha-ketobutyrate and ammonia from threonine in a two-step reaction. The first step involved a dehydration of threonine and a production of enamine intermediates (aminocrotonate), which tautomerizes to its imine form (iminobutyrate). Both intermediates are unstable and short-lived. The second step is the nonenzymatic hydrolysis of the enamine/imine intermediates to form 2- ketobutyrate and free ammonia. In the low water environment of the cell, the second step is accelerated by RidA (By similarity). Belongs to the serine/threon [...] (514 aa)
ilvCKetol-acid reductoisomerase; Involved in the biosynthesis of branched-chain amino acids (BCAA). Catalyzes an alkyl-migration followed by a ketol-acid reduction of (S)-2-acetolactate (S2AL) to yield (R)-2,3-dihydroxy-isovalerate. In the isomerase reaction, S2AL is rearranged via a Mg-dependent methyl migration to produce 3-hydroxy-3-methyl-2-ketobutyrate (HMKB). In the reductase reaction, this 2-ketoacid undergoes a metal-dependent reduction by NADPH to yield (R)-2,3-dihydroxy-isovalerate. (491 aa)
pfkA6-phosphofructokinase I; Catalyzes the phosphorylation of D-fructose 6-phosphate to fructose 1,6-bisphosphate by ATP, the first committing step of glycolysis. (320 aa)
lsrESimilar to E. coli D-ribulose-5-phosphate 3-epimerase (AAC76411.1); Blastp hit to AAC76411.1 (225 aa), 26% identity in aa 1 - 217. (254 aa)
tpiATriosephosphate isomerase; Involved in the gluconeogenesis. Catalyzes stereospecifically the conversion of dihydroxyacetone phosphate (DHAP) to D- glyceraldehyde-3-phosphate (G3P); Belongs to the triosephosphate isomerase family. (255 aa)
glpXSimilar to E. coli unknown function in glycerol metabolism (AAC76907.1); Blastp hit to AAC76907.1 (336 aa), 94% identity in aa 1 - 336. (336 aa)
talCPutative transaldolase; Catalyzes the reversible formation of fructose 6-phosphate from dihydroxyacetone and D-glyceraldehyde 3-phosphate via an aldolization reaction; Belongs to the transaldolase family. Type 3A subfamily. (220 aa)
pflDPutative pyruvate formate lyase II; Similar to E. coli formate acetyltransferase 2 (AAC76933.1); Blastp hit to AAC76933.1 (765 aa), 92% identity in aa 1 - 765. (765 aa)
pflCSimilar to E. coli probable pyruvate formate lyase activating enzyme 2 (AAC76934.1); Blastp hit to AAC76934.1 (292 aa), 78% identity in aa 1 - 292. (292 aa)
ppcPhosphoenolpyruvate carboxylase; Forms oxaloacetate, a four-carbon dicarboxylic acid source for the tricarboxylic acid cycle. (883 aa)
pgiSimilar to E. coli glucosephosphate isomerase (AAC76995.1); Blastp hit to AAC76995.1 (549 aa), 95% identity in aa 1 - 548. (549 aa)
fumBFumarase B; Catalyzes the reversible hydration of fumarate to (S)-malate. Belongs to the class-I fumarase family. (548 aa)
frdDFumarate reductase; Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane. (119 aa)
frdCFumarate reductase; Seems to be involved in the anchoring of the catalytic components of the fumarate reductase complex to the cytoplasmic membrane. (131 aa)
frdBFumarate reductase; Anaerobic; Fe-S protein subunit; similar to E. coli fumarate reductase, anaerobic, iron-sulfur protein subunit (AAC77113.1); Blastp hit to AAC77113.1 (244 aa), 95% identity in aa 1 - 244; Belongs to the succinate dehydrogenase/fumarate reductase iron-sulfur protein family. (244 aa)
frdAFumarate reductase; Anaerobic; flavoprotein subunit; similar to E. coli fumarate reductase, anaerobic, flavoprotein subunit (AAC77114.1); Blastp hit to AAC77114.1 (602 aa), 95% identity in aa 1 - 595. (596 aa)
fbpSimilar to E. coli fructose-bisphosphatase (AAC77189.1); Blastp hit to AAC77189.1 (332 aa), 97% identity in aa 1 - 332. (332 aa)
treCTrehalose- 6-P hydrolase; Alternative inducer of maltose system; cytoplasmic; similar to E. coli trehalase 6-P hydrolase (AAC77196.1); Blastp hit to AAC77196.1 (551 aa), 84% identity in aa 1 - 551. (550 aa)
yjjWPyruvate formate lyase activating enzyme; Similar to E. coli putative activating enzyme (AAC77332.1); Blastp hit to AAC77332.1 (287 aa), 81% identity in aa 1 - 287. (287 aa)
yjjIPutative cytoplasmic protein; Similar to E. coli orf, hypothetical protein (AAC77333.1); Blastp hit to AAC77333.1 (516 aa), 89% identity in aa 1 - 516. (516 aa)
deoC2-deoxyribose-5-phosphate aldolase; Catalyzes a reversible aldol reaction between acetaldehyde and D-glyceraldehyde 3-phosphate to generate 2-deoxy-D-ribose 5- phosphate. (265 aa)
deoAThymidine phosphorylase; The enzymes which catalyze the reversible phosphorolysis of pyrimidine nucleosides are involved in the degradation of these compounds and in their utilization as carbon and energy sources, or in the rescue of pyrimidine bases for nucleotide synthesis. Belongs to the thymidine/pyrimidine-nucleoside phosphorylase family. (440 aa)
deoBPhosphopentomutase; Phosphotransfer between the C1 and C5 carbon atoms of pentose; Belongs to the phosphopentomutase family. (407 aa)
lplALipoate-protein ligase A; Catalyzes both the ATP-dependent activation of exogenously supplied lipoate to lipoyl-AMP and the transfer of the activated lipoyl onto the lipoyl domains of lipoate-dependent enzymes. (338 aa)
gpmBSimilar to E. coli phosphoglyceromutase 2 (AAC77348.1); Blastp hit to AAC77348.1 (215 aa), 91% identity in aa 1 - 215; Belongs to the phosphoglycerate mutase family. GpmB subfamily. (215 aa)
Your Current Organism:
Salmonella enterica Typhimurium
NCBI taxonomy Id: 99287
Other names: S. enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium LT2, Salmonella enterica subsp. enterica serovar Typhimurium str. LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2, Salmonella enterica subsp. enterica serovar Typhimurium strain LT2-LTL2, Salmonella typhimurium LT2
Server load: low (22%) [HD]